| [1] |
LI S, JIANG D, ROSENKRANS Z T, et al. Aptamer-conjugated framework nucleic acids for the repair of cerebral ischemia-reperfusion injury[J]. Nano Lett, 2019, 19(10): 7334-7341.
doi: 10.1021/acs.nanolett.9b02958
pmid: 31518140
|
| [2] |
YI X, ZHU L, SUI G, et al. Inflammation and endothelial function relevant genetic polymorphisms and carotid plaque in Chinese population[J]. J Atheroscler Thromb, 2020, 27(9): 978-994.
doi: 10.5551/jat.53074
pmid: 31956237
|
| [3] |
SUN X, WANG D, ZHANG T, et al. Eugenol attenuates cerebral ischemia-reperfusion injury by enhancing autophagy via AMPK-mTOR-P70S6K pathway[J]. Front Pharmacol, 2020, 11: 84.
|
| [4] |
HANNAN M A, DASH R, SOHAG A A M, et al. Neuroprotection against oxidative stress: phytochemicals targeting TrkB signaling and the Nrf2-ARE antioxidant system[J]. Front Mol Neurosci, 2020, 13: 116.
doi: 10.3389/fnmol.2020.00116
pmid: 32714148
|
| [5] |
WEI P, WANG P, LI B, et al. Divergence and convergence of cerebral ischemia pathways profile deciphers differential pure additive and synergistic mechanisms[J]. Front Pharmacol, 2020, 11: 80.
doi: 10.3389/fphar.2020.00080
pmid: 32161541
|
| [6] |
XU L, JI H, JIANG Y, et al. Exosomes derived from CircAkap7-modified adipose-derived mesenchymal stem cells protect against cerebral ischemic injury[J]. Front Cell Dev Biol, 2020, 8: 569977.
|
| [7] |
RODGERS H, BOSOMWORTH H, KREBS H I, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial[J]. Lancet, 2019, 394(10192): 51-62.
doi: S0140-6736(19)31055-4
pmid: 31128926
|
| [8] |
REYNOLDS C, OSUAGWU B A, VUCKOVIC A. Influence of motor imagination on cortical activation during functional electrical stimulation[J]. Clin Neurophysiol, 2015, 126(7): 1360-1369.
doi: 10.1016/j.clinph.2014.10.007
pmid: 25454278
|
| [9] |
CARINO-ESCOBAR R I, CARRILLO-MORA P, VALDÉS-CRISTERNA R, et al. Longitudinal analysis of stroke patients' brain rhythms during an intervention with a brain-computer interface[J]. Neural Plast, 2019, 2019: 7084618.
|
| [10] |
LIU Z, TANG J, GAO B, et al. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces[J]. Nat Commun, 2020, 11(1): 4234.
|
| [11] |
PICHIORRI F, MATTIA D. Brain-computer interfaces in neurologic rehabilitation practice[J]. Handb Clin Neurol, 2020, 168: 101-116.
doi: B978-0-444-63934-9.00009-3
pmid: 32164846
|
| [12] |
MIAO Y, CHEN S, ZHANG X, et al. BCI-based rehabilitation on the stroke in sequela stage[J]. Neural Plast, 2020, 2020: 8882764.
|
| [13] |
GUERRA Z F, LUCCHETTI A L G, LUCCHETTI G. Motor imagery training after stroke: a systematic review and meta-analysis of randomized controlled trials[J]. J Neurol Phys Ther, 2017, 41(4): 205-214.
doi: 10.1097/NPT.0000000000000200
pmid: 28922311
|
| [14] |
SINHA A M, NAIR V A, PRABHAKARAN V. Brain-computer interface training with functional electrical stimulation: facilitating changes in interhemispheric functional connectivity and motor outcomes post-stroke[J]. Front Neurosci, 2021, 15: 670953.
|
| [15] |
LEE S H, KIM S S, LEE B H. Action observation training and brain-computer interface controlled functional electrical stimulation enhance upper extremity performance and cortical activation in patients with stroke: a randomized controlled trial[J]. Physiother Theory Pract, 2022, 38(9): 1126-1134.
|
| [16] |
PINTI P, TACHTSIDIS I, HAMILTON A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1): 5-29.
|
| [17] |
刘佳琪, 侯闪闪, 汪鑫煜, 等. 不同吞咽时期大脑皮质激活特征:基于功能性近红外光谱技术[J]. 中国康复理论与实践, 2024, 30(6) : 709-718.
doi: 10.3969/j.issn.1006-9771.2024.06.011
|
|
LIU J Q, HOU S S, WANG X Y, et al. Characteristics of cerebral cortex activation in different swallowing periods based on near-infrared spectroscopy[J]. Chin J Rehabil Theory Pract, 2024, 30(6): 709-718.
|
| [18] |
李晁金子, 黄富表, 杜晓霞, 等. 功能性近红外光谱技术在利手、非利手主动抓握-释放任务下脑区激活研究中的应用[J]. 中国康复理论与实践, 2021, 27(9): 1066-1071.
doi: 10.3969/j.issn.1006-9771.2021.09.010
|
|
LI C J Z, HUANG F B, DU X X, et al. Application of functional near-infrared spectroscopy in brain area activation research: dominant and non-dominant hand under active grasp-release task[J]. Chin J Rehabil Theory Pract, 2021, 27(9): 1066-1071.
|
| [19] |
中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715.
|
|
Chinese Society of Neurology, Chinese Stroke Society. Diagnostic criteria of cerebrovascular diseases in China (version 2019)[J]. Chin J Neurol, 2019, 52(9): 710-715.
|
| [20] |
ANG K K, CHUA K S, PHUA K S, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke[J]. Clin EEG Neurosci, 2015, 46(4): 310-320.
doi: 10.1177/1550059414522229
pmid: 24756025
|
| [21] |
XUE J, REN F, SUN X, et al. A multifrequency brain network-based deep learning framework for motor imagery decoding[J]. Neural Plast, 2020, 2020: 8863223.
|
| [22] |
RAMOS-MURGUIALDAY A, BROETZ D, REA M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study[J]. Ann Neurol, 2013, 74(1): 100-108.
|
| [23] |
WANG A, TIAN X, JIANG D, et al. Rehabilitation with brain-computer interface and upper limb motor function in ischemic stroke: a randomized controlled trial[J]. Med, 2024, 5(6): 559-569.e554.
doi: 10.1016/j.medj.2024.02.014
pmid: 38642555
|
| [24] |
HARRISON S J, HOUGH M, SCHMID K, et al. When coordinating finger tapping to a variable beat the variability scaling structure of the movement and the cortical BOLD signal are both entrained to the auditory stimuli[J]. Neuroscience, 2018, 392: 203-218.
doi: S0306-4522(18)30436-6
pmid: 29958941
|
| [25] |
MODI H N, SINGH H, FIORENTINO F, et al. Association of residents' neural signatures with stress resilience during surgery[J]. JAMA Surg, 2019, 154(10): e192552.
|
| [26] |
BHAMBHANI Y, FAN J L, PLACE N, et al. Electromyographic, cerebral, and muscle hemodynamic responses during intermittent, isometric contractions of the biceps brachii at three submaximal intensities[J]. Front Physiol, 2014, 5: 190.
doi: 10.3389/fphys.2014.00190
pmid: 24966837
|
| [27] |
WILCOX T, HASLUP J A, BOAS D A. Dissociation of processing of featural and spatiotemporal information in the infant cortex[J]. Neuroimage, 2010, 53(4): 1256-1263.
doi: 10.1016/j.neuroimage.2010.06.064
pmid: 20603218
|
| [28] |
KILTENI K, ANDERSSON B J, HOUBORG C, et al. Motor imagery involves predicting the sensory consequences of the imagined movement[J]. Nat Commun, 2018, 9(1): 1617.
doi: 10.1038/s41467-018-03989-0
pmid: 29691389
|
| [29] |
FORNIA L, PUGLISI G, LEONETTI A, et al. Direct electrical stimulation of the premotor cortex shuts down awareness of voluntary actions[J]. Nat Commun, 2020, 11(1): 705.
doi: 10.1038/s41467-020-14517-4
pmid: 32019940
|
| [30] |
CHANG C Y, CHEN Y H, YEN N S. Nonlinear neuroplasticity corresponding to sports experience: a voxel-based morphometry and resting-state functional connectivity study[J]. Hum Brain Mapp, 2018, 39(11): 4393-4403.
|
| [31] |
BAI Z, FONG K N K, ZHANG J J, et al. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis[J]. J Neuroeng Rehabil, 2020, 17(1): 57.
doi: 10.1186/s12984-020-00686-2
pmid: 32334608
|
| [32] |
SCHULZ R, BRAASS H, LIUZZI G, et al. White matter integrity of premotor-motor connections is associated with motor output in chronic stroke patients[J]. Neuroimage Clin, 2015, 7: 82-86.
|