《中国康复理论与实践》 ›› 2025, Vol. 31 ›› Issue (11): 1314-1321.doi: 10.3969/j.issn.1006-9771.2025.11.008

• 应用研究 • 上一篇    下一篇

定量脑电图在轻度认知障碍数字化筛查中的应用

顾剑鹏1, 宋玉磊1, 殷海燕1, 尹婷婷1, 孙凤仪1, 杨冰清1, 赵鸣晖2, 徐桂华1, 柏亚妹1()   

  1. 1.南京中医药大学护理学院,江苏南京市 210023
    2.东南大学仪器科学与工程学院,江苏南京市 210096
  • 收稿日期:2025-07-14 修回日期:2025-10-07 出版日期:2025-11-25 发布日期:2025-11-26
  • 通讯作者: 柏亚妹 E-mail:czbym@njucm.edu.cn
  • 作者简介:顾剑鹏(2001-),男,汉族,江苏泰州市人,硕士研究生,主要研究方向:老年护理。
  • 基金资助:
    1.国家重点研发项目(2023YFC3603600);2.国家自然科学基金面上项目(72174095);3.江苏省社会发展面上项目(BE2022802);4.江苏省研究生科研创新计划课题(YCX25_2388)

Application of quantitative electroencephalography in digital screening for mild cognitive impairment

GU Jianpeng1, SONG Yulei1, YIN Haiyan1, YIN Tingting1, SUN Fengyi1, YANG Bingqing1, ZHAO Minghui2, XU Guihua1, BAI Yamei1()   

  1. 1. School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
    2. School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2025-07-14 Revised:2025-10-07 Published:2025-11-25 Online:2025-11-26
  • Contact: BAI Yamei E-mail:czbym@njucm.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFC3603600);National Natural Science Foundation of China (General)(72174095);Jiangsu Provincial Social Development Project (General)(BE2022802);Jiangsu Postgraduate Research & Practice Innovation Program(YCX25_2388)

摘要:

目的 探讨轻度认知障碍(MCI)患者在数字化认知筛查任务中前额叶定量脑电图(qEEG)特征,并分析其用于MCI患者筛查的应用价值。

方法 选取2024年7月至8月江苏省南京市40个社区的592例MCI患者(MCI组)和317例正常认知老年人(对照组)。两组均接受蒙特利尔认知评估量表-北京版(MoCA-BJ)评估。采用便携式脑电仪采集前额叶脑电数据,通过快速傅里叶变换进行功率谱分析。采用XGBoost算法构建基于qEEG功率特征的MCI识别模型,采用受试者工作特征曲线(ROC)评估模型的识别性能。

结果 与对照组相比,MCI组筛查任务中前额叶δ、α和β频段功率显著升高(P < 0.05);δ频段功率与MoCA-BJ总分、视空间与执行能力、注意力和延迟回忆评分呈显著负相关(r = -0.269、-0.169、-0.133、-0.171, P < 0.001);α频段功率与MoCA-BJ总分、注意力和延迟回忆评分呈负相关(r = -0.113、-0.075、-0.091, P < 0.05)。基于δ和α频段功率构建的XGBoost模型识别MCI,ROC曲线下面积为0.91,准确率为0.81,精准率为0.89,F1分数为0.84,召回率为0.80,特异性为0.81。

结论 MCI患者在数字化筛查任务中表现出前额叶δ和α频段功率升高,且与认知功能下降有关;基于qEEG功率特征构建XGBoost模型可以实现MCI的早期预测。

关键词: 老年人, 轻度认知障碍, 数字化筛查, 定量脑电图, XGBoost算法

Abstract:

Objective To explore the quantitative electroencephalography (qEEG) characteristics of the prefrontal cortex in patients with mild cognitive impairment (MCI) during digital screening tasks for MCI screening.

Methods A total of 592 MCI patients (MCI group) and 317 normal cognitively elderly individuals (control group) were recruited from 40 communities in Nanjing, Jiangsu Province, from July to August, 2024. All participants were assessed using Montreal Cognitive Assessment-Beijing Version (MoCA-BJ). Prefrontal EEG data were collected using a portable EEG device, and power spectral analysis was performed via Fast Fourier Transform. An XGBoost algorithm was employed to construct an MCI identification model based on qEEG power features, and the model's performance was evaluated using receiver operating characteristic (ROC) curve.

Results Compared with the control group, prefrontal δ, α, and β band power increased during screening tasks in MCI group (P < 0.05); δ power was negatively correlated with MoCA-BJ total scores, and visuospatial/executive function, attention and delayed recall scores (r = -0.269, -0.169, -0.133, -0.171, P < 0.001); α power was negatively correlated with MoCA-BJ total scores, attention and delayed recall scores (r = -0.113, -0.075, -0.091, P < 0.05). The XGBoost model based on δ and α power was excellent in MCI identification, with an area under the curve of 0.91, accuracy of 0.81, precision of 0.89, F1 score of 0.84, recall of 0.80, and specificity of 0.81.

Conclusion MCI patients exhibit increased power in the prefrontal δ and α frequency bands during digital screening tasks, which is associated with cognitive decline. An XGBoost model based on qEEG power features can enable early prediction of MCI.

Key words: elderly, mild cognitive impairment, digital screening, quantitative electroencephalography, XGBoost

中图分类号: