[1] Walder B, Haller G, Rebetez MM, et al. Severe traumatic brain injury in a high-income country: an epidemiological study [J]. J Neurotrauma, 2013, 30(23): 1934-1942. [2] Ponsford JL, Spitz G, Cromarty F, et al. Costs of care after traumatic brain injury [J]. J Neurotrauma, 2013, 30(17): 1498-1505. [3] Graham DP, Cardon AL. An update on substance and treatment following traumatic brain injury [J]. Ann N Y Acad Sci, 2008, 1141: 148-162. [4] Rotaru DC, Lewis DA, Gonzalez-Burgos G. Dopamine D1 receptor activation regulates sodium channel-dependent EPSP amplification in rat prefrontal cortex pyramidal neurons [J]. J Physiol, 2007, 581(Pt 3): 981-1000. [5] Huger F, Patrick G. Effect of concussive head injury on central catecholamine levels and synthesis rates in rat brain regions [J]. J Neurochem, 1979, 33(1): 89-95. [6] Dunn-Meynerll A, Pan S, Levin BE. Forcoal traumatic brain injury cause widespread reductions in rat brain norepinephrine turnover from 6 to 24 h [J]. Brain Res, 1994, 660(1): 88-95. [7] McIntosh TK, Yu T, Gennarelli TA. Alterations in regional brain catecholamine concentrations after experimental brain injury in the rat [J]. J Neurochem, 1994, 63(4): 1426-1433. [8] Massucci JL, Kline AE, Ma X, et al. Time dependent alterations in dopamine tissue levels and metabolism after experimental traumatic brain injury in rats [J]. J Neurosci Lett, 2004, 372(1-2): 127-131. [9] Kobori N, Clifton GL, Dash PK. Enhanced catecholamine synthesis in the prefrontal cortex after traumatic brain injury: implications for prefrontal dysfunction [J]. J Neurotrauma, 2006, 23(7): 1094-1102. [10] Globus MY, Busto R, Dietrich WD, et al. Effect of ischemia on the in vivo release of striatal dopamine, glutamate, and γ-aminobutyric acid studied by intracerebral microdialysis [J]. J Neurochem, 1988, 51(5): 1455-1464. [11] Dietrich WD, Alonso O, Halley M. Early microvascular and neuronal consequences of traumaticbrain injury: a light and electron microscopic study in rats [J]. J Neurotrauma, 1994, 11(3): 289-301. [12] Wagner AK, Sokoloski JE, Ren D, et al. Controlled cortical impact injury affects dopaminergic transmission in the rat striatum [J]. J Neurochem, 2005, 95(2): 457-465. [13] van Bregt DR, Thomas TC, Hinzman JM, et al. Substantia nigra vulnerability after a single moderate diffuse brain injury in the rat [J]. Exp Neurol, 2012, 234(1): 8-19. [14] Hutson CB, Lazo CR, Mortazavi F, et al. Traumatic brain injury in adult rats causes progressive nigrostriatal dopaminergic cell loss and enhanced vulnerability to the pesticide paraquat [J]. J Neurotrauma, 2011,28(9): 1783-1801. [15] Chen YH, Huang EY, Kuo TT, et al. Dopamine relaease in the nucleus accumbens is altered following traumatic brain injury [J]. Neuroscience, 2017, 348: 180-190. [16] Blanchard V, Chritin M, Vyas S, et al. Long-term induction of tyrosine hydroxylase expression: compensatory response to partial degeneration of the dopaminergic nigrostriatal system in the rat brain [J]. J Neurochem, 1995, 64(4): 1669-1679. [17] Mura A, Feldon J. Spatial learning in rats is impaired after degeneration of the nigrostriatal dopaminergic system [J]. Mov Disord, 2003, 18(8): 860-871. [18] Onn SP, Berger TW, Stricker EM, et al. Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: histochemical and neurochemical analysis [J]. Brain Res, 1986, 376(1): 8-19. [19] Redell JB, Dash PK. Traumatic brain injury stimulates hippocampal catechol-O-methyl transferase expression in microglia [J]. Neurosci Lett, 2007, 413(1): 36-41. [20] Yan HQ, Ma X, Chen X, et al. Delayed increase of tyrosine hydroxylase expression in rat nigrostriatal system after traumatic brain injury [J]. Brain Res, 2007, 1134(1): 171-179. [21] Yan HQ, Kline AE, Ma X, et al. Traumatic brain injury reduces dopamine transporter protein expression in the rat frontal cortex [J]. Neuroreport, 2002, 13(15): 1899-1901. [22] Henry JM, Talukder NK, Lee AB, et al. Cerebral trauma-induced changes in corpusstriatal dopamine receptor subtypes [J]. Invest Surg, 1997, 10(5): 281-286. [23] Wagner AK, Sokoloski JE, Chen X, et al. Controlled cortical impact injury influences methylphenidate-induced changes in striatal dopamine neurotransmission [J]. J Neurochem, 2009, 110(3): 801-810. [24] Wagner AK, Scanlon JM, Becker CR, et al. The influence of genetic variants on striatal dopaminetransporter and D2 receptor binding after TBI [J]. Cereb Blood Flow Metab, 2014, 34(8): 1328-1339. [25] Donnemiller E, Brenneis C, Wissel J, et al. Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPECT study using 123 I-beta-CIT and 123 I-IBZM [J]. Eur J Nucl Med, 2000, 27(9): 1410-1414. [26] Phillis JW. Acetylcholine release from the central nervous system: A 50-year retrospective [J]. Crit Rev Neurobiol, 2005, 17(3-4): 161-217. [27] Winkler J, Suhr ST, Gage FH, et al. Essential role of neocortical acetylcholine in spatial memeoty [J]. Nature, 1995, 375(6531): 484-487. [28] Gorman LK, Fu K, Hovad DA, et al. Analysis of acetylcholine release following concussive brain injury in the rat [J]. J Neurotrauma, 1988, 6: 203. [29] Sajia A, Hayes RL, Lyeth BG, et al. The effect of concussive head injury on central cholinergic neurons [J]. Brain Res, 1988, 452(1-2): 303-311. [30] Sachs E Jr. Acetylcholine and serotonin in the spinal fluid [J]. J Neurosurg, 1957, 14(1): 22-27. [31] Dixon CE, Ma X, Marion DW. Reduced evokes release of acetylcholine in the rodent neocortex following traumatic brain injury [J]. Brain Res, 1997, 749(1): 127-130. [32] Scremin OU, Li MG, Roch M, et al. Acetylcholine and choline dynamics provide early and late markers of traumatic brain injury [J]. Brain Res, 2006, 1124(1): 155-166. [33] 李坪,于建云,赵小林,等. 脑震荡对大鼠脑内乙酰胆碱M1受体亚型的影响[J]. 解剖学杂志, 2007, 30(2): 235-237. [34] Shao L, Ciallella JR, Yan HQ, et al. Differential effects of traumatic brain injury on vesicular acetylcholine transporter and M2 muscarinic receptor mRNA and protein in rat [J]. J Neurotrauma, 1999, 16(7): 555-566. [35] Shin SS, Dixon CE. Targeting α7 nicotinic acetylcholine receptors: a future potential for neuroprotection from traumatic brain injury [J]. Neural Regan Res, 2015, 10(10): 1552-1554. [36] Pullman SL, Watts RL, Juncos JL, et al. Dopaminergic effects on simple and choice reaction time performance in Parkinson's disease [J]. Neurology, 1988, 38(2): 249-254. [37] Halliday R, Callaway E, Lannon R. The effects of clonidine and yohimbineon human information processing [J]. Psychopharmacology (Berl), 1989, 99(4): 563-566. [38] Carli M, Robbins TW, Evenden JL, et al. Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal [J]. Behav Brain Res, 1983, 9(3): 361-380. [39] Cole BJ, Robbins TW. Forebrain norepinephrine: role in controlled information processing in the rat [J]. Neuropsychopharmacology, 1992, 7(2): 129-142. [40] Aston-Jones G, Rajkowski J, Cohen J. Role of locus coeruleus in attention and behavioral flexibility [J]. Biol Psychiatry, 1999, 46(6): 1309-1320. [41] Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala [J]. Nat Rev Neurosci, 2009, 10(6): 423-433. [42] Levin BE, Brown KL, Pawar G, et al. Widespread and lateralization effects of acute traumatic brain injury on norepinephrine turnover in the rat brain [J]. Brain Res, 1995, 674(2): 307-313. [43] Dunn-Meynell AA, Hassanain M, Levin BE. Norepinephrine and traumatic brain injury: a possible role in post-traumatic edema [J]. Brain Res, 1998, 800(2): 245-252. [44] McIntosh TK, Yu T, Gennarelli TA. Alterations in regionalbrain catecholamine concentrations after experimentalbrain injury in the rat [J]. J Neurochem, 1994, 63(4): 1426-1433. [45] Fujinaka T, Kohmura E, Yuguchi T, et al. The morphological and neurochemical effects of diffuse brain injury on rat central noradrenergic system [J]. Neurol Res, 2003, 25(1): 35-41. [46] Boyeson MG, Feeney DM. Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury [J]. Pharmacol Biochem Behav, 1990, 35(3): 497-501. [47] Sutton RL, Feeney DM. alpha-Noradrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after sensorimotorcortex ablation in the rat [J]. Restor Neurol Neurosci, 1992, 4(1): 1-11. [48] Prasad MR, Tzigaret CM, Smith D, et al. Decreased alpha 1-adrenergic receptors after experimental brain injury [J]. J Neurotrauma, 1992, 9(3): 269-279. [49] Clifton GL, Robertson CS, Kyper K, et al. Cardiovascular response to severe headinjury [J]. J Neurosurg, 1983, 59(3): 447-454. [50] Mautoes AE, Muller M, Cortbus F, et al. Alterations of norepinephrine levels in plasma and CSF of patients after traumatic brain injury in relation to disruption of the blood-brain barrier [J]. Acta Neurochir, 2001, 143(1): 51-55. [51] Levin BE, Pan S, Dunn-Meynell A. Chronic alterations in rat brain alpha-adrenoceptors following traumatic brain injury [J]. Restor Neurol Neurosci, 1994, 7(1): 5-12. [52] Faden AI, Demediuk P, Panter SS, et al. The role of excitatory amino acids and NMDA receptors in traumatic brain injury [J]. Science, 1989, 44(4906): 798-800. [53] Baker AJ, Moulton RJ, MacMillan VH, et al. Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans [J]. J Neurosurg, 1993, 79(3): 369-372. [54] Zhang H, Zhang X, Zhang T, et al. Excitatory amino acids in cerebrospinal fluid of patients with acute head injuries [J]. Clin Chem, 2001, 47(8): 1458-1462. [55] Hayes RL, Jenkins LW, Lyeth BG. Neurotransmitter-mediated mechanisms of traumatic brain injury: acetylcholine and excitatory amino acids [J]. J Neurotrauma, 1992, 9(Suppl 1): 173-187. [56] Kline AE, Yu J, Horvath E, et al. The selective 5-HT(1A) receptor agonist repinotan HCl attenuates histopathology and spatial learning deficits following traumatic brain injury in rats [J]. Neuroscience, 2001, 106(3): 547-555. [57] Christofides J, Bridel M, Egerton M, et al. Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington's disease or chronic brain injury [J]. Eur J Neurol, 2006, 13(1): 30-42. |