《中国康复理论与实践》 ›› 2020, Vol. 26 ›› Issue (11): 1305-1310.doi: 10.3969/j.issn.1006-9771.2020.11.010
收稿日期:
2020-01-14
修回日期:
2020-04-14
出版日期:
2020-11-25
发布日期:
2020-11-24
通讯作者:
封世文
E-mail:fengsw@ntu.edu.cn
作者简介:
封世文(1978-),男,汉族,江苏南京市人,博士,副教授,主要研究方向:神经语言学。
基金资助:
FENG Shi-wen1,2(),LI Qian-nan2,3,YANG Long2,3,SHAO Ke-qing2,3
Received:
2020-01-14
Revised:
2020-04-14
Published:
2020-11-25
Online:
2020-11-24
Contact:
FENG Shi-wen
E-mail:fengsw@ntu.edu.cn
Supported by:
摘要:
原发性进行性失语(PPA)是一种常见的退行性神经系统性言语障碍疾病。早期研究初步发现大脑水平的致病原因;而基于基因技术研究发现,约20%~30%患者存在常染色体显性遗传,C9基因突变是导致与肌萎缩性脊髓侧索硬化症、额颞叶痴呆等PPA类相关疾病的因素,C9基因重复序列扩增可能干扰C9基因表达,阻断RNA结合蛋白,并破坏RNA功能。
中图分类号:
封世文,李倩南,杨龙,邵可青. 原发性进行性失语的基因机制研究进展[J]. 《中国康复理论与实践》, 2020, 26(11): 1305-1310.
FENG Shi-wen,LI Qian-nan,YANG Long,SHAO Ke-qing. Advance in Genetic Mechanism of Primary Progressive Aphasia (review)[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2020, 26(11): 1305-1310.
[1] |
Mesulam M M. Primary progressive aphasia: a 25-year retrospective[J]. Alzheimer Dis Assoc Disord, 2007, 21(4):S8-S11.
doi: 10.1097/WAD.0b013e31815bf7e1 |
[2] |
Westbury C, Bub D. Primary progressive aphasia: a review of 112 cases[J]. Brain Lang, 1997, 60(3):381-406.
pmid: 9398390 |
[3] | Karbe H, Kertesz A, Polk M. Profiles of language impairment in primary progressive aphasia[J]. Arch Neurol, 1993, 50(2):193-201. |
[4] |
Mesulam M M. Primary progressive aphasia[J]. Ann Neurol, 2001, 49(4):425-432.
pmid: 11310619 |
[5] |
Gorno-Tempini M L, Dronkers N F, Rankin K P, et al. Cognition and anatomy in three variants of primary progressive aphasia[J]. Ann Neurol, 2004, 55(3):335-346.
pmid: 14991811 |
[6] |
Rabinovici G D, Jagust W J, Furst A J, et al. Aβ amyloid and glucose metabolism in three variants of primary progressive aphasia[J]. Ann Neurol, 2008, 64(4):388-401.
doi: 10.1002/ana.21451 pmid: 18991338 |
[7] |
Mummery C J, Patterson K, Price C J, et al. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory[J]. Ann Neurol, 2000, 47(1):36-45.
pmid: 10632099 |
[8] |
Hillis A E. Lost for words[J]. Neurology, 2008, 71(16):1218-1219.
doi: 10.1212/01.wnl.0000327100.41096.b3 pmid: 18768918 |
[9] |
Bonakdarpour B, Hurley R S, Wang A R, et al. Perturbations of language network connectivity in primary progressive aphasia[J]. Cortex, 2019, 121:468-480.
doi: S0010-9452(19)30298-9 pmid: 31530376 |
[10] |
Seixas L B, Levine B, Graham N L, et al. Impaired coherence for semantic but not episodic autobiographical memory in semantic variant primary progressive aphasia[J]. Cortex, 2020, 123:72-85.
doi: S0010-9452(19)30359-4 pmid: 31760339 |
[11] |
Auclair-Ouellet N, Fossard M, Macoir J, et al. The nonverbal processing of actions is an area of relative strength in the semantic variant of primary progressive aphasia[J]. J Speech Lang Hear Res, 2020, 63(2):569-584.
doi: 10.1044/2019_JSLHR-19-00271 |
[12] |
Billette O V, Preiß D, Nestor P J. The concept of regularization: resolving the problem of surface dyslexia in semantic variant primary progressive aphasia across different languages[J]. Neuropsychology, 2020, 34(3):298-307.
doi: 10.1037/neu0000611 pmid: 31868373 |
[13] |
Duncan E S, Donovan N J, Sajjadi S A. Clinical assessment of characteristics of apraxia of speech in primary progressive aphasia[J]. Am J Speech Lang Pathol, 2020, 29(1S):485-497.
doi: 10.1044/2019_AJSLP-CAC48-18-0225 |
[14] |
de Aguiar V, Zhao Y, Faria A, et al. Brain volumes as predictors of tDCS effects in primary progressive aphasia[J]. Brain Lang, 2020, 200:104707.
doi: S0093-934X(19)30323-2 pmid: 31704518 |
[15] |
Faria A V, Meyer A, Friedman R, et al. Baseline MRI associates with later naming status in primary progressive aphasia[J]. Brain Lang, 2020, 201:104723.
doi: 10.1016/j.bandl.2019.104723 |
[16] | 汪洁, 吴东宇, 袁英, 等. 经颅直流电刺激对非流利型原发性进行性失语症语言功能的作用[J]. 中国康复医学杂志, 2015, 30(11):1112-1117. |
Wang J, Wu D Y, Yuan Y, et al. Effects of transcranial direct current stimulation on language improvement in non-fluent primary progressive aphasia[J]. Chin J Rehabil Med, 2015, 30(11):1112-1117. | |
[17] | 邓静, 唐金华, 倪丽君. 经颅直流电刺激对非流利型原发性进行性失语症的治疗作用[J]. 中国听力语言康复科学杂志, 2017, 15(6):449-452. |
Deng J, Tang J H, Ni L J. Therapeutic effect of transcranial DC stimulation on non-fluent primary progressive aphasia[J]. Chin Sci J Hear Speech Rehabil, 2017, 15(6):449-452. | |
[18] |
Andersen C, Dahl C, Almkvist O, et al. Bilateral temporal lobe volume reduction parallels cognitive impairment in progressive aphasia[J]. Arch Neurol, 1997, 54(10):1294-1299.
doi: 10.1001/archneur.1997.00550220092020 |
[19] |
Sonty S P, Mesulam M, Thompson C K, et al. Primary progressive aphasia: PPA and the language network[J]. Ann Neurol, 2003, 53(1):35-49.
doi: 10.1002/(ISSN)1531-8249 |
[20] |
Mummery C J, Patterson K, Wise R J, et al. Disrupted temporal lobe connections in semantic dementia[J]. Brain, 1999, 122(1):61-73.
doi: 10.1093/brain/122.1.61 |
[21] | 彭蓉, 袁光固, 汪颖, 等. 原发性进行性失语一例报道[J]. 中国临床心理学杂志, 1999, 7(3):173. |
Peng R, Yuan G G, Wang Y, et al. A case report of primary progressive aphasia[J]. Chi J Clin Psychol, 1999, 7(3):173. | |
[22] | 陈彪, 马秋兰, 马云川, 等. 原发性进行性失语一例临床分析[J]. 中华神经科杂志, 2002, 35(3):162-164. |
Chen B, Ma Q L, Ma Y C, et al. Primary progressive aphasia: a case analysis[J]. Chin J Neurol, 2002, 35(3):162-164. | |
[23] | 尹得菊, 张莹, 程焱, 等. 寡语型原发性进行性失语的语言损害特点及其机制[J]. 中华老年心脑血管病杂志, 2018, 20(9):1000-1002. |
Yin D J, Zhang Y, Cheng Y, et al. Features and mechanism of language impairment of primary progressive aphasia[J]. Chin J Geriatr Heart Brain Vessel Dis, 2018, 20(9):1000-1002. | |
[24] | 刘替红, 田玉玲, 赵娅蓉, 等. 原发性进行性失语病人语言学量表及影像学特点分析[J]. 中西医结合心脑血管病杂志, 2018, 16(7):983-986. |
Liu T H, Tian Y L, Zhao Y R, et al. Analysis of linguistic scale and imaging features of primary progressive aphasia[J]. Chin J Integr Med Cardiovasc Dis, 2018, 16(7):983-986. | |
[25] | 周统权, 侯小燕, 周思若. 走进原发性进行性失语症[J]. 北京第二外国语学院学报, 2017, 39(1):30-44, 129. |
Zhou T Q, Hou X Y, Zhou S R. An access to primary progressive aphasia[J]. J Beijing Int Stud Univ, 2017, 39(1):30-44, 129. | |
[26] | 赵伟杰, 曹云鹏. 原发性进行性失语语言学的量表诊断[J]. 国际神经病学·神经外科学杂志, 2016, 43(5):467-470. |
Zhao W J, Cao Y P. Linguistics scale diagnosis of primary progressive aphasia[J]. J Int Neurol Neurosurg, 2016, 43(5):467-470. | |
[27] | 赵伟杰, 曹云鹏, 尹文超, 等. 不同量表对原发性进行性失语亚型的语言学分析[J]. 脑与神经疾病杂志, 2016, 24(8):463-468. |
Zhao W J, Cao Y P, Yin W C, et al. The linguistic analysis of the subtypes of primary progressive aphasia with different scales[J]. J Brain Nerv Dis, 2016, 24(8):463-468. | |
[28] | 顾诗渊, 李琦, 陈翔骏. 原发性进行性非流利性失语的研究进展[J]. 卒中与神经疾病, 2014, 21(5):316-318. |
Gu S Y, Li Q, Chen X J. Advances in the study on the non-fluent/agrammatic variant of primary progressive aphasia[J]. Stroke Nerv Dis, 2014, 21(5):316-318. | |
[29] | Snowden J S, Neary D, Mann D M A. Fronto-temporal Lobar Degeneration: Fronto-temporal Dementia, Progressive Aphasia, Semantic Dementia[M]. New York: Churchill Livingston, 1996. |
[30] |
Hurst J A, Baraitser M, Auger E, et al. An extended family with a dominantly inherited speech disorder[J]. Dev Med Child Neurol, 1990, 32(4):352-355.
doi: 10.1111/j.1469-8749.1990.tb16948.x |
[31] |
Fisher S E, Vargha-Khadem F, Watkins K E, et al. Localisation of a gene implicated in a severe speech and language disorder[J]. Nat Genet, 1998, 18(2):168-170.
pmid: 9462748 |
[32] |
Lai C S, Fisher S E, Hurst J A, et al. A forkhead-domain gene is mutated in a severe speech and language disorder[J]. Nature, 2001, 413(6855):519-523.
pmid: 11586359 |
[33] |
Vargha-Khadem F, Gadian D G, Copp A, et al. FOXP2 and the neuroanatomy of speech and language[J]. Nat Rev Neurosci, 2005, 6(2):131-138.
pmid: 15685218 |
[34] |
Enard W, Przeworski M, Fisher S E, et al. Molecular evolution of FOXP2, a gene involved in speech and language[J]. Nature, 2002, 418(6900):869-872.
doi: 10.1038/nature01025 |
[35] |
Konopka G, Bomar J M, Winden K, et al. Human-specific transcriptional regulation of CNS development genes by FOXP2[J]. Nature, 2009, 462(7270):213-217.
doi: 10.1038/nature08549 |
[36] |
Enard W, Gehre S, Hammerschmidt K, et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice[J]. Cell, 2009, 137(5):961-971.
doi: 10.1016/j.cell.2009.03.041 |
[37] |
Premi E, Pilotto A, Alberici A, et al. FOXP2, APOE, and PRNP: new modulators in primary progressive aphasia[J]. J Alzheimers Dis, 2012, 28(4):941-950.
doi: 10.3233/JAD-2011-111541 |
[38] |
Rohrer J D, Guerreiro R, Vandrovcova J, et al. The heritability and genetics of frontotemporal lobar degeneration[J]. Neurology, 2009, 73(18):1451-1456.
doi: 10.1212/WNL.0b013e3181bf997a pmid: 19884572 |
[39] |
Sieben A, Van Langenhove T, Engelborghs S, et al. The genetics and neuropathology of frontotemporal lobar degeneration[J]. Acta Neuropathol, 2012, 124(3):353-372.
doi: 10.1007/s00401-012-1029-x pmid: 22890575 |
[40] |
Snowden J S, Pickering-Brown S M, Mackenzie I R, et al. Progranulin gene mutations associated with frontotemporal dementia and progressive non-fluent aphasia[J]. Brain, 2006, 129(11):3091-3102.
doi: 10.1093/brain/awl267 |
[41] |
Baker M, Mackenzie I R, Pickering-Brown S M, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17[J]. Nature, 2006, 442(7105):916-919.
pmid: 16862116 |
[42] |
Cruts M, Gijselinck I, van der Zee J, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21[J]. Nature, 2006, 442(7105):920-924.
pmid: 16862115 |
[43] |
Van Swieten J C, Heutink P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia[J]. Lancet Neurol, 2008, 7(10):965-974.
doi: 10.1016/S1474-4422(08)70194-7 pmid: 18771956 |
[44] |
Caso F, Villa C, Fenoglio C, et al. The progranulin (GRN) Cys157LysfsX97 mutation is associated with nonfluent variant of primary progressive aphasia clinical phenotype[J]. J Alzheimers Dis, 2012, 28(4):759-763.
doi: 10.3233/JAD-2011-111544 |
[45] |
Ramos E M, Dokuru D R, Van Berlo V, et al. Genetic screen in a large series of patients with primary progressive aphasia[J]. Alzheimers Dement, 2019, 15(4):553-560.
doi: 10.1016/j.jalz.2018.10.009 |
[46] |
Cruchaga C, Fernández-Seara M A, Seijo-Martínez M, et al. Cortical atrophy and language network reorganization associated with a novel progranulin mutation[J]. Cerebral Cortex, 2009, 19(8):1751-1760.
doi: 10.1093/cercor/bhn202 |
[47] |
Majounie E, Renton A E, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study[J]. Lancet Neurol, 2012, 11(4):323-330.
doi: 10.1016/S1474-4422(12)70043-1 pmid: 22406228 |
[48] |
DeJesus-Hernandez M, Mackenzie I R, Boeve B F, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS[J]. Neuron, 2011, 72(2):245-256.
doi: 10.1016/j.neuron.2011.09.011 pmid: 21944778 |
[49] |
Renton A E, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD[J]. Neuron, 2011, 72(2):257-268.
doi: 10.1016/j.neuron.2011.09.010 pmid: 21944779 |
[50] |
Orr H T. FTD and ALS: genetic ties that bind[J]. Neuron, 2011, 72(2):189-190.
doi: 10.1016/j.neuron.2011.10.001 |
[51] |
Haeusler A R, Donnelly C J, Periz G, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease[J]. Nature, 2014, 507(7491):195-200.
doi: 10.1038/nature13124 pmid: 24598541 |
[52] |
Zhou B, Liu C, Geng Y, et al. Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD[J]. Sci Rep, 2015, 5:16673.
doi: 10.1038/srep16673 pmid: 26564809 |
[53] |
Mori K, Weng S M, Arzberger T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS[J]. Science, 2013, 339(6125):1335-1338.
doi: 10.1126/science.1232927 |
[54] |
Xu Z, Poidevin M, Li X, et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration[J]. Proc Natl Acad Sci USA, 2013, 110(19):7778-7783.
doi: 10.1073/pnas.1219643110 |
[55] |
Bonham L W, Steele N Z R, Karch C M, et al. Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia[J]. Sci Rep, 2019, 9(1):10854.
doi: 10.1038/s41598-019-46415-1 pmid: 31350420 |
[56] |
Whitwell J L, Weigand S D, Boeve B F, et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics[J]. Brain, 2012, 135(3):794-806.
doi: 10.1093/brain/aws001 |
[57] |
Zhang K, Donnelly C J, Haeusler A R, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport[J]. Nature, 2015, 525(7567):56-61.
doi: 10.1038/nature14973 pmid: 26308891 |
[1] | 邵伟婷, 雷江华. 反应中断再定向干预孤独症谱系障碍儿童刻板语言的效果:Scoping综述[J]. 《中国康复理论与实践》, 2024, 30(1): 10-20. |
[2] | 王航宇, 葛可可, 范永红, 都丽露, 邹敏, 封磊. 基于ICD-11和ICF主动式音乐疗法改善认知障碍老年人认知功能的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 36-43. |
[3] | 闻嘉宁, 金秋艳, 张琦, 李杰, 司琦. 认知参与型身体活动对发展儿童青少年执行功能的效果:基于ICF的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 44-53. |
[4] | 葛可可, 范永红, 王航宇, 都丽露, 李长江, 邹敏. 失眠老年人正念干预健康效益的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 54-60. |
[5] | 张婧雅, 邹敏, 孙宏伟, 孙昌隆, 朱峻同. 听障儿童青少年焦虑或抑郁情绪心理干预效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1004-1011. |
[6] | 王俊宇, 杨永, 袁逊, 谢婷, 庄洁. 高强度间歇训练对健康儿童青少年执行功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1012-1020. |
[7] | 魏晓微, 杨剑, 魏春艳. 特殊教育学校孤独症谱系障碍儿童参与适应性瑜伽活动的心理与行为效益的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1021-1028. |
[8] | 杨亚茹, 杨剑. 基于WHO-HPS架构学校身体活动相关健康服务及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1040-1047. |
[9] | 史佳伟, 李凌宇, 杨浩杰, 王琴潞, 邹海欧. 预康复对全膝关节置换术后患者的有效性:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1057-1064. |
[10] | 蒋长好, 黄辰, 高晓妍, 戴元富, 赵国明. 神经反馈训练对老年人认知功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 903-909. |
[11] | 魏晓微, 杨剑, 魏春艳, 贺启令. 学校环境下适应性体育课程促进智力与发展性残疾儿童心理运动发展的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 910-918. |
[12] | 张园, 杨剑. 基于世界卫生组织健康促进学校架构的学校健康服务及效果:Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(7): 791-799. |
[13] | 王少璞, 陈钢. 基于世界卫生组织健康促进学校架构的心理行为健康服务及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(7): 800-807. |
[14] | 蒋长好, 高晓妍. 短时身体活动对儿童认知功能影响的系统综述[J]. 《中国康复理论与实践》, 2023, 29(6): 667-672. |
[15] | 袁媛, 杨剑. 社区老年人身体活动融合慢性病管理的健康效益:Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(5): 541-550. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 785
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 693
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|