《中国康复理论与实践》 ›› 2022, Vol. 28 ›› Issue (1): 62-68.doi: 10.3969/j.issn.1006-9771.2022.01.010
收稿日期:
2021-07-25
修回日期:
2021-08-21
出版日期:
2022-01-25
发布日期:
2022-02-11
通讯作者:
郑海清
E-mail:zhenghaiqing0909@aliyun.com
作者简介:
陈莉琳(1996-),女,汉族,广东潮州市人,硕士研究生,主要研究方向:神经康复。
基金资助:
CHEN Lilin,HUANG Mudan,ZHENG Haiqing()
Received:
2021-07-25
Revised:
2021-08-21
Published:
2022-01-25
Online:
2022-02-11
Contact:
ZHENG Haiqing
E-mail:zhenghaiqing0909@aliyun.com
Supported by:
摘要:
目的 总结脑卒中后肢体痉挛相关的电生理指标和量表,以实现痉挛临床管理的一体化。方法 检索建库至2021年5月15日Web of Science、PubMed、中国知网、万方数据库中脑卒中后肢体痉挛识别与评估的相关文献,对脑卒中后肢体痉挛评估的相关量表和电生理指标进行综述。结果 目前临床用于脑卒中后肢体痉挛评估的量表主要包括改良Asworth量表、综合痉挛量表和改良Tardieu量表。F波、H反射、运动诱发电位、惊跳反射响应时间、前庭诱发肌源性电位等电生理指标能用于识别与评估脑卒中后肢体痉挛。结论 需进一步开展临床研究探讨如何更加客观、精准地早期识别和评估痉挛。
中图分类号:
陈莉琳,黄牡丹,郑海清. 脑卒中后肢体痉挛的识别与评估:Scoping综述[J]. 《中国康复理论与实践》, 2022, 28(1): 62-68.
CHEN Lilin,HUANG Mudan,ZHENG Haiqing. Identification and evaluation of post-stroke spasticity: a scoping review[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(1): 62-68.
表1
纳入文献的一般资料"
作者 | 国家 | n | 部位 | 评价工具 | 结局 |
---|---|---|---|---|---|
Poon等[ | 中国 | 78 | 踝 | CSS 比目鱼肌牵张反射 肌电图肌肉共收缩指数 | 重测信度0.78~0.97 |
Choi等[ | 韩国 | 28 | 膝、踝 | 基于惯性传感器的MTS 传统MTS | 基于惯性传感器准确率高(均方根误差< 3.2°),重测信度和评估者间信度高(组内相关系数> 0.8) |
Udby Blicher等[ (2009) | 丹麦 | 42 | 肘、腕 | MAS F波振幅 F波频率 M波振幅 | 痉挛组和非痉挛组间F波频率无显著性差异 |
Leng等[ | 中国 | 27 | 腕 | MAS NeuroFlexor神经、弹性和黏性成分 MyotonPRO中F值、S值 EIM中电阻和电抗 | MAS评分降低不伴痉挛相关神经成分的变化 |
Phadke等[ | 美国 | 36 | 腕 | MAS H反射 M波 Hmax/Mmax Hslp/Mslp HTH/MTH | Hmax/Mmax、Hslp/Mslp和HTH/MTH重测组内相关系数分别为0.85、0.88和0.69;H反射相关指标与MAS评分无相关性 |
Kumru等[ | 西班牙 | 21 | 膝 | MAS H反射 M波 Hmax/Mmax T反射 屈肌反射 | MAS评分降低不伴H反射相关指标变化 |
Fujiwara等[ | 日本 | 61 | 腕 | MAS SICI RI | RI-3的变化与腕痉挛程度的变化负相关 |
Sangari等[ | 美国 | 60 | 膝 | MAS 钟摆实验 Hmax/Mmax MEP MRI | MEP与痉挛程度相关(r = 0.55) |
Piscitelli等[ | 加拿大 | 44 | 肘 | CSS MEP TSRT | MEP阈值与痉挛程度呈正相关(r = 0.62);MEP振幅增量与痉挛程度负相关(r = -0.464),与TSRT增量强相关(r = 0.691) |
Choudhury等[ | 英国、印度 | 114 | 腕 | MAS ARAT 关节活动席 VRT VART VSRT | 痉挛程度越高,惊跳反射越强 |
Miller等[ | 美国 | 17 | 肘、踝 | MAS AGSI VEMP不对称指数、非痉挛侧校正振幅、痉挛侧校正振幅 | 不对称指数与抗重力痉挛指数正相关;非痉挛侧与痉挛侧校正振幅比与抗重力痉挛指数负相关 |
Chen等[ | 美国 | 22 | 肘、腕、指 | MAS 背景肌电均方根值 肌电平均振幅 MEP | 痉挛相关的RST兴奋抑制皮质脊髓束电活动 |
Rasool等[ | 美国 | 25 | 肘 | MAS 肌电均方根值 肌肉激活模式图(支持向量机) 肌电相关性和欧几里得距离 肌肉活动域 | 肌肉活动域的增大、肌肉激活区的转变与痉挛程度相关 |
Misgeld等[ | 德国 | 14 | 膝、踝 | MAS 肌电图 ICA | ICA与MAS评分线性相关 |
Ellis等[ | 丹麦 | 26 | 肘 | MAS 肌电平均振幅 | 屈肌协同运动是脑卒中患者功能障碍的主要原因,屈肌痉挛与被动支撑下运动受阻有关 |
Yu等[ | 中国 | 15 | 肘 | MAS 肌电图 TSRT | sEMG-ANFIS模型与MAS线性相关,R2 = 0.97 |
Afzal等[ | 美国 | 19 | 肘 | MAS 肌电图 TSRT | 脑卒中患者的痉挛侧和非痉挛侧均存在TSRT调节紊乱,与RST双侧下行调节脊髓运动神经元有关 |
Turpin等[ | 加拿大 | 13 | 肘 | DSRT TSRT ΔTSRT | ΔTSRT与CSS负相关(r = -0.68),主动与被动伸肘时的TSRT有显著性差异,与不同活动状态下脊髓运动神经元兴奋性调节有关 |
Levin等[ | 加拿大 | 33 | 肘 | MAS DSRT TSRT | 亚急性期与慢性期脑卒中患者间TSRT无显著性差异;拮抗肌和主动肌过度共同激活和交互抑制障碍可能与两组肌肉TSRT调节障碍有关 |
[1] | Report on Stroke Prevention and Treatment in China Writing Group. Brief report on stroke prevention and treatment in China, 2019[J]. Chin J Cerebrovasc Dis, 2020, 17(5):272-281. |
[2] |
URBAN P P, WOLF T, UEBELE M, et al. Occurence and clinical predictors of spasticity after ischemic stroke[J]. Stroke, 2010, 41(9):2016-2020.
doi: 10.1161/STROKEAHA.110.581991 |
[3] |
LI S, FRANCISCO G E, RYMER W Z. A new definition of poststroke spasticity and the interference of spasticity with motor recovery from acute to chronic stages[J]. Neurorehabil Neural Repair, 2021, 35(7):601-610.
doi: 10.1177/15459683211011214 |
[4] |
POON D M, HUI-CHAN C W. Hyperactive stretch reflexes, co-contraction, and muscle weakness in children with cerebral palsy[J]. Dev Med Child Neurol, 2009, 51(2):128-135.
doi: 10.1111/dmcn.2009.51.issue-2 |
[5] |
FOSANG A L, GALEA M P, MCCOY A T, et al. Measures of muscle and joint performance in the lower limb of children with cerebral palsy[J]. Dev Med Child Neurol, 2003, 45(10):664-670.
doi: 10.1111/dmcn.2003.45.issue-10 |
[6] | BARNES M P, JOHNSON G R. Upper Motor Neurone Syndrome and Spasticity: Clinical Management and Neurophysiology [M]. 2nd ed. Cambridge: Cambridge University Press, 2008. |
[7] |
CHOI S, SHIN Y B, KIM S Y, et al. A novel sensor-based assessment of lower limb spasticity in children with cerebral palsy[J]. J Neuroeng Rehabil, 2018, 15(1):45.
doi: 10.1186/s12984-018-0388-5 |
[8] | LI R Q, REN Y F, WU M L, et al. Research progress on the assessment of post-stroke spasticity[J]. Chin J Rehabil Med, 2018, 33(6):742-745. |
[9] | MAYO M, DEFOREST B A, CASTELLANOS M, et al. Characterization of involuntary contractions after spinal cord injury reveals associations between physiological and self-reported measures of spasticity[J]. Front Integr Neurosci, 2017, 11:2. |
[10] | EISEN A, ODUSOTE K. Amplitude of the F wave: a potential means of documenting spasticity[J]. Neurology, 1979, 9(1):1306-1309. |
[11] |
WUPUER S, YAMAMOTO T, KATAYAMA Y, et al. F-wave suppression induced by suprathreshold high-frequency repetitive trascranial magnetic stimulation in poststroke patients with increased spasticity[J]. Neuromodulation, 2013, 16(3):206-211.
doi: 10.1111/j.1525-1403.2012.00520.x |
[12] |
UDBY BLICHER J, NIELSEN J F. Evidence of increased motoneuron excitability in stroke patients without clinical spasticity[J]. Neurorehabil Neural Repair, 2009, 23(1):14-16.
doi: 10.1177/1545968308317439 |
[13] |
LENG Y, LO W L A, HU C, et al. The effects of extracorporeal shock wave therapy on spastic muscle of the wrist joint in stroke survivors: evidence from neuromechanical analysis[J]. Front Neurosci, 2021, 14:580762.
doi: 10.3389/fnins.2020.580762 |
[14] |
PHADKE C P, ROBERTSON C T, CONDLIFFE E G, et al. Upper-extremity H-reflex measurement post-stroke: reliability and inter-limb differences[J]. Clin Neurophysiol, 2012, 123(8):1606-1615.
doi: 10.1016/j.clinph.2011.12.012 |
[15] |
KUMRU H, MURILLO N, SAMSO J V, et al. Reduction of spasticity with repetitive transcranial magnetic stimulation in patients with spinal cord injury[J]. Neurorehabil Neural Repair, 2010, 24(5):435-441.
doi: 10.1177/1545968309356095 |
[16] |
DAY B L, MARSDEN C D, OBESO J A, et al. Reciprocal inhibition between the muscles of the human forearm[J]. J Physiol, 1984, 349:519-534.
doi: 10.1113/jphysiol.1984.sp015171 |
[17] |
NAKASHIMA K, ROTHWELL J C, DAY B L, et al. Reciprocal inhibition between forearm muscles in patients with writer's cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke[J]. Brain, 1989, 112(3):681-697.
doi: 10.1093/brain/112.3.681 |
[18] |
FUJIWARA T, TSUJI T, HONAGA K, et al. Transcranial direct current stimulation modulates the spinal plasticity induced with patterned electrical stimulation[J]. Clin Neurophysiol, 2011, 122(9):1834-1837.
doi: 10.1016/j.clinph.2011.02.002 |
[19] | BURKE D, WISSEL J, DONNAN G A. Pathophysiology of spasticity in stroke[J]. Neurology, 2013, 80(3 Suppl 2):S20-S26. |
[20] | FUJIWARA T, HONAGA K, KAWAKAMI M, et al. Modulation of cortical and spinal inhibition with functional recovery of upper extremity motor function among patients with chronic stroke[J]. Restor Neurol Neurosci, 2015, 33(6):883-894. |
[21] |
LI S, FRANCISCO G E. New insights into the pathophysiology of post-stroke spasticity[J]. Front Hum Neurosci, 2015, 9:192.
doi: 10.3389/fpsyg.2018.00192 |
[22] | SANGARI S, LUNDELL H, KIRSHBLUM S, et al. Residual descending motor pathways influence spasticity after spinal cord injury[J]. Ann Neurol, 2019, 86(1):28-41. |
[23] |
PISCITELLI D, TURPIN N A, SUBRAMANIAN S K, et al. Deficits in corticospinal control of stretch reflex thresholds in stroke: implications for motor impairment[J]. Clin Neurophysiol, 2020, 131(9):2067-2078.
doi: 10.1016/j.clinph.2020.05.030 |
[24] |
LI S, CHEN YT, FRANCISCO GE, et al. A unifying pathophysiological account for post-stroke spasticity and disordered motor control[J]. Front Neurol, 2019, 10:468.
doi: 10.3389/fneur.2019.00468 |
[25] |
VAN LITH B J H, COPPENS M J M, NONNEKES J, et al. Start react during gait initiation reveals differential control of muscle activation and inhibition in patients with corticospinal degeneration[J]. J Neurol, 2018, 265(11):2531-2539.
doi: 10.1007/s00415-018-9027-0 |
[26] |
CHOUDHURY S, SHOBHANA A, SINGH R, et al. The relationship between enhanced reticulospinal outflow and upper limb function in chronic stroke patients[J]. Neurorehabil Neural Repair, 2019, 33(5):375-383.
doi: 10.1177/1545968319836233 |
[27] |
MILLER D M, KLEIN C S, SURESH N L, et al. Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: evidence for a vestibulospinal role[J]. Clin Neurophysiol, 2014, 125(10):2070-2078.
doi: 10.1016/j.clinph.2014.01.035 |
[28] |
CHEN Y T, LI S, ZHOU P, et al. A startling acoustic stimulation (SAS)-TMS approach to assess the reticulospinal system in healthy and stroke subjects[J]. J Neurol Sci, 2019, 399:82-88.
doi: 10.1016/j.jns.2019.02.018 |
[29] |
RASOOL G, AFSHARIPOUR B, SURESH N L, et al. Spatial analysis of multichannel surface EMG in hemiplegic stroke[J]. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(10):1802-1811.
doi: 10.1109/TNSRE.7333 |
[30] |
MISGELD B J, LUKEN M, HEITZMANN D, et al. Body-sensor-network-based spasticity detection[J]. IEEE J Biomed Health Inform, 2016, 20(3):748-755.
doi: 10.1109/JBHI.2015.2477245 |
[31] |
ELLIS M D, SCHUT I, DEWALD J P A. Flexion synergy overshadows flexor spasticity during reaching in chronic moderate to severe hemiparetic stroke[J]. Clin Neurophysiol, 2017, 128(7):1308-1314.
doi: 10.1016/j.clinph.2017.04.028 |
[32] |
YU S, CHEN Y, CAI Q, et al. A novel quantitative spasticity evaluation method based on surface electromyogram signals and Adaptive Neuro Fuzzy Inference System[J]. Front Neurosci, 2020, 14:462.
doi: 10.3389/fnins.2020.00462 |
[33] |
MULLICK A A, MUSAMPA N K, FELDMAN A G, et al. Stretch reflex spatial threshold measure discriminates between spasticity and rigidity[J]. Clin Neurophysiol, 2013, 124(4):740-751.
doi: 10.1016/j.clinph.2012.10.008 |
[34] |
AFZAL T, CHARDON M K, RYMER W Z, et al. Stretch reflex excitability in contralateral limbs of stroke survivors is higher than in matched controls[J]. J Neuroeng Rehabil, 2019, 16(1):154.
doi: 10.1186/s12984-019-0623-8 |
[35] |
BLANCHETTE A K, MULLICK A A, MOÏN-DARBARI K, et al. Tonic stretch reflex threshold as a measure of ankle plantar-flexor spasticity after stroke[J]. Phys Ther, 2016, 96(5):687-695.
doi: 10.2522/ptj.20140243 |
[36] |
TURPIN N A, FELDMAN A G, LEVIN M F. Stretch-reflex threshold modulation during active elbow movements in post-stroke survivors with spasticity[J]. Clin Neurophysiol, 2017, 128(10):1891-1897.
doi: 10.1016/j.clinph.2017.07.411 |
[37] |
LEVIN M F, SOLOMON J M, SHAH A, et al. Activation of elbow extensors during passive stretch of flexors in patients with post-stroke spasticity[J]. Clin Neurophysiol, 2018, 129(10):2065-2074.
doi: 10.1016/j.clinph.2018.07.007 |
[1] | 邵伟婷, 雷江华. 反应中断再定向干预孤独症谱系障碍儿童刻板语言的效果:Scoping综述[J]. 《中国康复理论与实践》, 2024, 30(1): 10-20. |
[2] | 林娜, 高菡璐, 卢惠苹, 陈燕清, 郑军凡, 陈述荣. 虚拟现实技术对脑卒中上肢功能影响的弥散张量成像研究[J]. 《中国康复理论与实践》, 2024, 30(1): 61-67. |
[3] | 王昊懿, 史亚伟, 鲁俊, 许光旭. 主观垂直感知障碍对脑卒中患者功能影响的回顾性研究[J]. 《中国康复理论与实践》, 2024, 30(1): 68-73. |
[4] | 陈珺雯, 陈谦, 陈程, 李淑月, 刘玲玲, 吴存书, 龚翔, 鲁俊, 许光旭. 改良八段锦身体活动对脑卒中患者心肺功能、运动功能和日常生活活动能力的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 74-80. |
[5] | 胡永林, 马颖, 窦超, 陆安民, 江小鸽, 宋新建, 肖玉华. 肩部控制训练联合神经松动术对脑卒中偏瘫患者肩痛及上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 81-86. |
[6] | 王贺, 韩靓, 阚梦凡, 于少泓. 电刺激治疗脑卒中后肩手综合征有效性的系统评价与Meta分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1048-1056. |
[7] | 胡晓诗, 张琦, 岳青, 梁艳华, 李晓松, 冯啊美, 张燕庆. 矫形弹力绷带对痉挛性偏瘫脑性瘫痪患儿步态对称性和步行能力的效果[J]. 《中国康复理论与实践》, 2023, 29(9): 1083-1089. |
[8] | 孙藤方, 任梦婷, 杨琳, 王耀霆, 王红雨, 闫兴洲. 高压氧治疗联合重复外周磁刺激干预脑卒中患者踝运动功能和平衡能力的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 875-881. |
[9] | 王亚楠, 刘西花. 脑卒中偏瘫患者主观和客观平衡功能测量的相关性及预测效能[J]. 《中国康复理论与实践》, 2023, 29(8): 890-895. |
[10] | 王海云, 王寅, 周信杰, 何爱群. 基于“中枢-外周-中枢”理论的经颅直流电刺激结合针刺干预脑卒中患者中枢及上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 919-925. |
[11] | 陈怡婷, 王倩, 崔慎红, 李映彩, 张思鈺, 魏衍旭, 任慧, 冷军, 陈斌. 双侧序贯重复经颅磁刺激干预脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 926-932. |
[12] | 李振亚, 孙洁, 郭鹏飞, 王光明. 脑卒中患者口期和咽期吞咽功能改变与误吸的相关性:基于电视透视吞咽检查[J]. 《中国康复理论与实践》, 2023, 29(8): 933-939. |
[13] | 张园, 杨剑. 基于世界卫生组织健康促进学校架构的学校健康服务及效果:Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(7): 791-799. |
[14] | 华玲, 张一楠, 郑玉, 孙俏仪, 房辉, 宋达. 手控节律音乐治疗对脑卒中后单侧空间忽略的效果[J]. 《中国康复理论与实践》, 2023, 29(7): 833-838. |
[15] | 蒋孝翠, 刘臻, 苏清伦, 赵秦, 夏晓昧, 陆飞. 间歇性Theta节律经颅磁刺激对脑卒中后非流利性失语的影响[J]. 《中国康复理论与实践》, 2023, 29(7): 839-843. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 857
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 611
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|