《中国康复理论与实践》 ›› 2022, Vol. 28 ›› Issue (10): 1198-1204.doi: 10.3969/j.issn.1006-9771.2022.10.010

• 应用研究 • 上一篇    下一篇

基于结构协变网络探索卒中后失语结构损伤特征

周雨帆1,徐敏杰1,谭逸海1,马亚男1,任巧生1,陈健1,张庆苏2,王博2,何怡2,常静玲1()   

  1. 1.北京中医药大学东直门医院神经内科,北京市 100700
    2.中国康复研究中心北京博爱医院,北京市 100068
  • 收稿日期:2022-05-20 修回日期:2022-08-25 出版日期:2022-10-25 发布日期:2022-11-08
  • 通讯作者: 常静玲 E-mail:ear6979@163.com
  • 作者简介:周雨帆(1996-),女,回族,新疆特克斯县人,硕士研究生,主要研究方向:中医药防治脑病的临床与神经影像学研究。
  • 基金资助:
    国家自然科学基金项目(81473654);中央高校校级重点攻关项目(2020-JYB-ZDGG-110-2);北京市自然科学基金重点项目(7181005)

Characteristics of post-stroke aphasia structural damage based on structural covariance network

ZHOU Yufan1,XU Minjie1,TAN Yihai1,MA Ya'nan1,REN Qiaosheng1,CHEN Jian1,ZHANG Qingsu2,WANG Bo2,HE Yi2,CHANG Jingling1()   

  1. 1. Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100070, China
    2. Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing 100068, China
  • Received:2022-05-20 Revised:2022-08-25 Published:2022-10-25 Online:2022-11-08
  • Contact: CHANG Jingling E-mail:ear6979@163.com
  • Supported by:
    National Natural Science Foundation of China(81473654);Central University Key Research Projects(2020-JYB-ZDGG-110-2);Beijing Municipal Natural Science Foundation(7181005)

摘要:

目的 基于高阶结构协变网络探讨卒中后失语(PSA)患者灰质结构异常改变。

方法 2019年6月至2022年3月,招募北京中医药大学东直门医院和北京博爱医院的PSA患者15例(患者组),同时招募健康受试者15例(对照组),采集大脑结构磁共振成像数据,由灰质体积相关性构建大脑协变网络,并使用图论分析方法评估结构协变网络的全局及节点网络水平拓扑属性,比较患者组和对照组灰质协变网络属性的组间差异。

结果 全局网络水平,两组拓扑属性比较无显著性差异(P > 0.05)。在节点水平,与对照组相比,患者组在右侧眶部额中回、右侧后扣带回、右侧杏仁核、左侧枕中回介数降低,右侧岛盖部额下回、右侧枕下回介数升高(P < 0.05);左侧眶内额上回、左侧前扣带和旁扣带脑回、左侧海马、左侧杏仁核节点度降低,右侧岛盖部额下回、左侧补充运动区、右侧枕上回、右侧枕下回、右侧豆状苍白球节点度升高(P < 0.05);左侧前扣带和旁扣带回、左侧海马、左侧杏仁核、左侧颞极:颞上回节点效率下降,右侧岛盖部额下回、左侧补充运动区、右侧枕下回节点效率升高(P < 0.05)。

结论 PSA患者左侧半球部分脑区节点网络属性异常降低可能是其特征性结构协变模式,并且右侧半球可能出现部分脑区结构网络的代偿。

关键词: 卒中后失语, 结构协变网络, 图论分析, 灰质结构

Abstract:

Objective To investigate the abnormal changes of gray matter structure covariant network in post-stroke aphasia (PSA) patients.

Methods From June, 2019 to March, 2022, 15 PSA patients (patient group) from Dongzhimen Hospital, Beijing University of Chinese Medicine and Beijing Bo'ai Hospital were recruited, as well as 15 healthy subjects (control group). Their brain structure magnetic resonance imaging data were collected. The brain covariant network was constructed based on gray matter volume correlation, and graph theory analysis method was used to evaluate the global and node network level topology properties of structural covariant network. The differences of gray matter covariant network properties between patients and controls were compared.

Results There was no significant difference in the global network level topology properties between two groups (P> 0.05). At the nodal level, compared with the control group, the betweenness decreased in the right middle frontal gyrus, right posterior cingulate gyrus, right amygdala, left middle occipital gyrus, and increased in the right inferior frontal gyrus and the right suboccipital gyrus of the insula operculum (P < 0.05); the node degree decreased in the left superior frontal gyrus, left anterior cingulate and paracingulate gyrus, left hippocampus and left amygdala, while it increased in the right inferior frontal gyrus, left supplementary motor area, right superior occipital gyrus, right inferior occipital gyrus, and right lentiform pallidus (P< 0.05); the node efficiency decreased in the left anterior cingulate and paracingulate gyrus, left hippocampus, left amygdala, left temporal pole: superior temporal gyrus, and increased in the inferior frontal gyrus of right insula, left supplementary motor area and right suboccipital gyrus (P< 0.05).

Conclusion The abnormal reduction of node network properties in some brain regions in the left hemisphere of PSA patients may be a characteristic structural covariation pattern, and there may be some compensation in the right hemisphere of the structural network in some brain regions.

Key words: post-stroke aphasia, structural covariance network, graph theoretical analysis, grey matter structure

中图分类号: