[1] |
中华医学会神经病学分会神经康复学组, 中国康复医学会脑血管病专业委员会, 中国康复研究中心. 卒中后失语临床管理专家共识[J]. 中国康复理论与实践, 2022, 28(1): 15-23.
|
|
Neurologic Rehabilitation Studies Group of Neurology Branch of Chinese Medical Association, Cerebrovascular Diseases Committee of Chinese Association Rehabilitation Medicine, China Rehabilitation Research Centre. Consensus on Clinical Management of Post-stroke Aphasia[J]. Chin J Rehabil Theory Pract, 2022, 28(1): 15-23.
|
[2] |
Collaborators GBD-2016-Stroke. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 439-458.
doi: S1474-4422(19)30034-1
pmid: 30871944
|
[3] |
BOEHME A K, MARTIN-SCHILD S, MARSHALL R S, et al. Effect of aphasia on acute stroke outcomes[J]. Neurology, 2016, 87(22): 2348-2354.
pmid: 27765864
|
[4] |
KOYUNCU E, AM P, ALTNOK N, et al. Speech and language therapy for aphasia following subacute stroke[J]. Neural Regeneration Res, 2016, 11(10): 1591-1594.
doi: 10.4103/1673-5374.193237
|
[5] |
STEFANIAK J D, ALYAHYA R S, RALPH M A L. Language networks in aphasia and health: a 1000 participant activation likelihood estimation meta-analysis[J]. Neuroimage, 2021, 233: 117960.
|
[6] |
HICKOK G, POEPPEL D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language[J]. Cognition, 2004, 92(1): 67-99.
doi: 10.1016/j.cognition.2003.10.011
|
[7] |
WANG H, JIN X, ZHANG Y, et al. Single-subject morphological brain networks: connectivity mapping, topological characterization and test-retest reliability[J]. Brain Behavior, 2016, 6(4): e00448.
|
[8] |
VAN OERS C A, VAN DER WORP H B, KAPPELLE L J, et al. Etiology of language network changes during recovery of aphasia after stroke[J]. Sci Rep, 2018, 8(1): 1-12.
|
[9] |
MECHELLI A, FRISTON K J, FRACKOWIAK R S, et al. Structural covariance in the human cortex[J]. J Neurosci, 2005, 25(36): 8303-8310.
doi: 10.1523/JNEUROSCI.0357-05.2005
pmid: 16148238
|
[10] |
EVANS A C. Networks of anatomical covariance[J]. Neuroimage, 2013, 80(80): 489-504.
doi: 10.1016/j.neuroimage.2013.05.054
|
[11] |
THIEL A, VAHDAT S. Structural and resting-state brain connectivity of motor networks after stroke[J]. Stroke, 2015, 46(1): 296-301.
doi: 10.1161/STROKEAHA.114.006307
pmid: 25477218
|
[12] |
YAN S, ZHANG G, ZHOU Y, et al. Abnormalities of cortical morphology and structural covariance network in patients with subacute basal ganglia stroke[J]. Acad Radiol, 2022, 29(S3): S157-S165.
doi: 10.1016/j.acra.2021.08.011
|
[13] |
KIM H, SHIN J, HAN C E, et al. Using individualized brain network for analyzing structural covariance of the cerebral cortex in Alzheimer's patients[J]. Front Neurosci, 2016, 10: 394.
|
[14] |
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018, 51(9): 666-682.
|
|
Branch of Neurology, Chinese Medical Association; Chinese Stroke Society. Chin J Neurol, 2018, 51(9): 666-682.
|
[15] |
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国脑出血诊治指南(2014)[J]. 中华神经科杂志, 2015, 48(6): 435-444.
|
|
Branch of Neurology, Chinese Medical Association; Chinese Stroke Society. Chin J Neurol, 2015, 48(6): 435-444.
|
[16] |
ZHANG J, WANG J, WU Q, et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder[J]. Biol Psychiatry, 2011, 70(4): 334-342.
doi: 10.1016/j.biopsych.2011.05.018
|
[17] |
KIRAN S, MEIER E L, JOHNSON J P. Neuroplasticity in aphasia: a proposed framework of language recovery[J]. J Speech Lang Hear Res, 2019, 62(11): 3973-3985.
doi: 10.1044/2019_JSLHR-L-RSNP-19-0054
|
[18] |
SHAH-BASAK P, SIVARATNAM G, TETI S, et al. Electrophysiological connectivity markers of preserved language functions in post-stroke aphasia[J]. Neuroimage Clin, 2022, 34: 103036.
|
[19] |
WATTS D J, STROGATZ S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442.
doi: 10.1038/30918
|
[20] |
FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977: 35-41.
|
[21] |
RUBINOV M, SPORNS O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage, 2010, 52(3): 1059-1069.
doi: 10.1016/j.neuroimage.2009.10.003
pmid: 19819337
|
[22] |
YU L, YU Y. Energy-efficient neural information processing in individual neurons and neuronal networks[J]. J Neurosci Res, 2017, 95(11): 2253-2266.
doi: 10.1002/jnr.24131
pmid: 28833444
|
[23] |
LIEBENTHAL E, SILBERSWEIG D A, STERN E. The language, tone and prosody of emotions: neural substrates and dynamics of spoken-word emotion perception[J]. Front Neurosci, 2016, 10: 506.
|
[24] |
O'KEEFE J, BURGESS N, DONNETT J G, et al. Place cells, navigational accuracy, and the human hippocampus[J]. Philos Trans R Soc Lond B Biol Sci, 1998, 353(1373): 1333-1340.
doi: 10.1098/rstb.1998.0287
|
[25] |
VOITS T, ROBSON H, ROTHMAN J, et al. The effects of bilingualism on hippocampal volume in ageing bilinguals[J]. Brain Struct Funct, 2022, 227(3): 979-994.
doi: 10.1007/s00429-021-02436-z
pmid: 34985602
|
[26] |
NAKAMURA K, INOMATA T, UNO A. Left amygdala regulates the cerebral reading network during fast emotion word processing[J]. Brain Struct Funct, 2020, 11: 1.
|
[27] |
QU J, HU L, LIU X, et al. The contributions of the left hippocampus and bilateral inferior parietal lobule to form-meaning associative learning[J]. Psychophysiology, 2021, 58(8): e13834.
|
[28] |
MAGUIRE E, MULLALLY S. The hippocampus: a manifesto for change[J]. J Exp Psychol Gen, 2013, 142(4): 1180-1189.
doi: 10.1037/a0033650
pmid: 23855494
|
[29] |
YAN T, ZHUANG K, HE L, et al. Left temporal pole contributes to creative thinking via an individual semantic network[J]. Psychophysiology, 2021, 58(8): e13841.
|
[30] |
PRICE C J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading[J]. Neuroimage, 2012, 62(2): 816-847.
doi: 10.1016/j.neuroimage.2012.04.062
pmid: 22584224
|
[31] |
VELDSMAN M, CHENG H, JI F, et al. Degeneration of structural brain networks is associated with cognitive decline after ischaemic stroke[J]. Brain Commun, 2020, 2(2): fcaa155.
|
[32] |
MESULAM M, WIENEKE C, HURLEY R, et al. Words and objects at the tip of the left temporal lobe in primary progressive aphasia[J]. Brain, 2013, 136(2): 601-618.
doi: 10.1093/brain/aws336
|
[33] |
JENSEN-KONDERING U R, GHOBADI Z, WOLFF S, et al. Acoustically presented semantic decision-making tasks provide a robust depiction of the temporo-parietal speech areas[J]. J Clin Neurosci, 2012, 19(3): 428-433.
doi: 10.1016/j.jocn.2011.04.038
|
[34] |
STEFANIAK J D, HALAI A D, LAMBON RALPH M A. The neural and neurocomputational bases of recovery from post-stroke aphasia[J]. Nat Rev Neurol, 2020, 16(1): 43-55.
doi: 10.1038/s41582-019-0282-1
pmid: 31772339
|
[35] |
JUNG J, LAMBON RALPH M A. Mapping the dynamic network interactions underpinning cognition: a cTBS-fMRI study of the flexible adaptive neural system for semantics[J]. Cereb Cortex, 2016, 26(8): 3580-3590.
doi: 10.1093/cercor/bhw149
pmid: 27242027
|
[36] |
GEVA S, SCHNEIDER L M, ROBERTS S, et al. Right cerebral motor areas that support accurate speech production following damage to cerebellar speech areas[J]. Neuroimage Clin, 2021, 32: 102820.
|
[37] |
GRIFFIS J C, NENERT R, ALLENDORFER J B, et al. Linking left hemispheric tissue preservation to fmri language task activation in chronic stroke patients[J]. Cortex, 2017, 96: 1-18.
doi: S0010-9452(17)30288-5
pmid: 28961522
|