《中国康复理论与实践》 ›› 2022, Vol. 28 ›› Issue (11): 1342-1348.doi: 10.3969/j.issn.1006-9771.2022.11.014
李晁金子1,2a,黄富表1,2b,杜晓霞1,2a,张豪杰1,张通1,2a()
收稿日期:
2022-08-28
修回日期:
2022-09-26
出版日期:
2022-11-25
发布日期:
2022-12-20
通讯作者:
张通
E-mail:tom611@126.com
作者简介:
李晁金子(1986-),女,汉族,陕西西安市人,硕士,主治医师,主要研究方向:神经康复。|张通(1961-),男,汉族,北京市人,博士,主任医师,主要研究方向:神经康复。
基金资助:
LI Chaojinzi1,2a,HUANG Fubiao1,2b,DU Xiaoxia1,2a,ZHANG Haojie1,ZHANG Tong1,2a()
Received:
2022-08-28
Revised:
2022-09-26
Published:
2022-11-25
Online:
2022-12-20
Contact:
ZHANG Tong
E-mail:tom611@126.com
Supported by:
摘要:
目的 基于功能性近红外光谱技术探讨亚急性脑卒中患者康复过程中优势与非优势大脑半球功能变化的差异。
方法 2019年9月至2020年6月,北京博爱医院亚急性脑卒中住院患者26例,其中左侧偏瘫患者10例(非优势半球组),右侧偏瘫患者16例(优势半球组),均行相同的单侧上肢任务导向作业治疗,共4周。训练前后,采用上肢动作研究量表、Fugl-Meyer评定量表上肢部分和握力进行评定,采用功能近红外光谱氧合血红蛋白浓度计算双侧感觉运动皮质、运动前皮质、前额叶皮质的平均β值。
结果 治疗后,两组各项临床评定均改善(|t| > 3.253, P < 0.05)。优势半球组上肢动作研究量表评分和握力改善程度大于非优势半球组(|t| > 2.154, P < 0.05)。时间、脑区、组别主效应均不显著(F < 0.542, P > 0.05),脑区与组别交互效应显著(F = 4.226, P < 0.01)。优势半球组,病灶同侧运动前皮质β值大于病灶对侧(P = 0.030),对侧前额叶皮质β值低于同侧感觉运动皮质β值(P = 0.024)、同侧运动前皮质(P = 0.003)和同侧前额叶皮质β值(P = 0.018)。
结论 脑卒中右侧偏瘫患者在亚急性期,随着上肢和手功能的恢复,优势半球与非优势半球脑区激活存在差异。
中图分类号:
李晁金子,黄富表,杜晓霞,张豪杰,张通. 亚急性脑卒中患者康复过程中优势与非优势脑半球功能变化差异[J]. 《中国康复理论与实践》, 2022, 28(11): 1342-1348.
LI Chaojinzi,HUANG Fubiao,DU Xiaoxia,ZHANG Haojie,ZHANG Tong. Brain functioning between dominant and non-dominant hemispheres during rehabilitation for subacute stroke[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(11): 1342-1348.
表5
两组治疗前后各脑区平均β值比较 单位:mol/L"
组别 | 脑区 | 治疗前 | 治疗后 |
---|---|---|---|
非优势半球组 (n = 10) | 同侧SMC | 2.66±2.24 | 2.67±1.69 |
对侧SMC | 4.32±3.41 | 4.60±4.62 | |
同侧PMC | 2.58±2.27 | 2.46±1.91 | |
对侧PMC | 4.28±3.82 | 3.77±2.61 | |
同侧PFC | 3.00±1.88 | 2.91±1.08 | |
对侧PFC | 3.85±2.47 | 3.77±2.68 | |
优势半球组 (n = 16) | 同侧SMC | 3.87±3.36 | 2.45±4.99 |
对侧SMC | 2.47±1.63 | 2.48±2.23 | |
同侧PMC | 3.67±3.00 | 5.05±6.80 | |
对侧PMC | 2.18±1.71 | 1.79±1.35 | |
同侧PFC | 2.75±3.24 | 3.69±3.70 | |
对侧PFC | 2.12±2.20 | 0.98±2.13 |
[1] |
CARLSON H L, CRAIG B T, HILDERLEY A J, et al. Structural and functional connectivity of motor circuits after perinatal stroke: a machine learning study[J]. Neuroimage Clin, 2020, 28: 102508.
doi: 10.1016/j.nicl.2020.102508 |
[2] |
KWAKKEL G, VAN PEPPEN R, WAGENAAR R C, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis[J]. Stroke, 2004, 35(11): 2529-2539.
pmid: 15472114 |
[3] |
KWAKKEL G, KOLLEN B, TWISK J. Impact of time on improvement of outcome after stroke[J]. Stroke, 2006, 37(9): 2348-2353.
pmid: 16931787 |
[4] |
DOBKIN B H, CARMICHAEL S T. The specific requirements of neural repair trials for stroke[J]. Neurorehabil Neural Repair, 2016, 30(5): 470-478.
doi: 10.1177/1545968315604400 pmid: 26359342 |
[5] | 张豪杰, 王云雷, 樊令仲, 等. 亚急性期脑卒中康复过程中半球间皮质结构可塑性差异[J]. 中国康复理论与实践, 2021, 27(4): 436-444. |
ZHANG H J, WANG Y L, FAN L Z, et al. Differences of structural plasticity between hemispheres during rehabilitation for subacute stroke[J]. Chin J Rehabil Theory Pract, 2021, 27(4): 436-444. | |
[6] | 司娟宁, 张文玥, 李雅欣, 等. 功能近红外光谱成像技术在大脑认知功能中的应用[J]. 立体定向和功能性神经外科杂志, 2018, 31(3): 189-192. |
SI J N, ZHANG W Y, LI Y X, et al. Application of functional near-infrared spectroscopy in brain cognitive function[J]. J Stereotactic Functional Neurosurg, 2018, 31(3): 189-192. | |
[7] |
ZHANG Y, ZHU C. Assessing brain networks by resting-state dynamic functional connectivity: an fNIRS-EEG study[J]. Front Neurosci, 2020, 13: 1430.
doi: 10.3389/fnins.2019.01430 |
[8] |
LI X, FANG F, LI R, et al. Functional brain controllability alterations in stroke[J]. Front Bioeng Biotechnol, 2022, 10: 925970.
doi: 10.3389/fbioe.2022.925970 |
[9] |
FERRARI M, QUARESIMA V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. Neuroimage, 2012, 63(2): 921-935.
doi: 10.1016/j.neuroimage.2012.03.049 pmid: 22510258 |
[10] |
CHEN W L, WAGNER J, HEUGEL N, et al. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: advances and future directions[J]. Front Neurosci, 2020, 14: 724.
doi: 10.3389/fnins.2020.00724 |
[11] |
LU K, XU G, LI W, et al. Frequency-specific functional connectivity related to the rehabilitation task of stroke patients[J]. Med Phys, 2019, 46(4): 1545-1560.
doi: 10.1002/mp.13398 pmid: 30675729 |
[12] |
LEFF D R, ORIHUELA-ESPINA F, ELWELL C E, et al. Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies[J]. Neuroimage, 2011, 54(4): 2922-2936.
doi: 10.1016/j.neuroimage.2010.10.058 pmid: 21029781 |
[13] |
MIYAI I, YAGURA H, HATAKENAKA M, et al. Longitudinal optical imaging study for locomotor recovery after stroke[J]. Stroke, 2003, 34(12): 2866-2870.
pmid: 14615624 |
[14] |
WANG L, YU C, CHEN H, et al. Dynamic functional reorganization of the motor execution network after stroke[J]. Brain, 2010, 133(Pt 4): 1224-1238.
doi: 10.1093/brain/awq043 pmid: 20354002 |
[15] |
PARK C H, CHANG W H, OHN S H, et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke[J]. Stroke, 2011, 42(5): 1357-1362.
doi: 10.1161/STROKEAHA.110.596155 |
[16] |
PUNDIK S, MCCABE J P, HROVAT K, et al. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity[J]. Front Hum Neurosci, 2015, 9: 394.
doi: 10.3389/fnhum.2015.00394 pmid: 26257623 |
[17] | 李晁金子, 黄富表, 杜晓霞, 等. 功能性近红外光谱技术在利手、非利手主动抓握-释放任务下脑区激活研究中的应用[J]. 中国康复理论与实践, 2021, 27(9): 1066-1071. |
LI C J Z, HUANG F B, DU X X, et al. Application of functional near-infrared spectroscopy in brain area activation research: dominant and non-dominant hand under active grasp-release task[J]. Chin J Rehabil Theory Pract, 2021, 27(9): 1066-1071. | |
[18] |
LI C, WONG Y, LANGHAMMER B, et al. A study of dynamic hand orthosis combined with unilateral task-oriented training in subacute stroke: a functional near-infrared spectroscopy case series[J]. Front Neurol, 2022, 13: 907186.
doi: 10.3389/fneur.2022.907186 |
[19] | AHO K, HARMSEN P, HATANO S, et al. Cerebrovascular disease in the community: results of a WHO collaborative study[J]. Bull World Health Organ, 1980, 58(1): 113-130. |
[20] |
OLDFIELD R C. The assessment and analysis of handedness: the Edinburgh inventory[J]. Neuropsychologia, 1971, 9(1): 97-113.
pmid: 5146491 |
[21] | WANG Y. Relations between the sides of linguistic cerebral dominance and manuality in Chinese aphasics[J]. Chin Med J (Engl), 1996, 109(7): 572-575. |
[22] |
ARYA K N, VERMA R, GARG R K, et al. Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial[J]. Top Stroke Rehabil, 2012, 19(3): 193-211.
doi: 10.1310/tsr1903-193 pmid: 22668675 |
[23] | 赵江莉, 毛玉瑢, 徐智勤, 等. 中文版上肢动作研究量表在早期脑梗死患者中的效度[J]. 中国康复理论与实践, 2019, 25(8): 946-955. |
ZHAO J L, MAO Y R, XU Z Q, et al. Validity of Chinese version of Action Research Arm Test in patients with early cerebral infarction[J]. Chin J Rehabil Theory Pract, 2019, 25(8): 946-955. | |
[24] |
WONG Y, LI C J, ADA L, et al. Upper limb training with a dynamic hand orthosis in early subacute stroke: a pilot randomized trial[J]. J Rehabil Med, 2022, 54: jrm00279.
doi: 10.2340/jrm.v54.2231 |
[25] |
FRANCESCHINI M A, JOSEPH D K, HUPPERT T J, et al. Diffuse optical imaging of the whole head[J]. J Biomed Opt, 2006, 11(5): 054007.
doi: 10.1117/1.2363365 |
[26] |
JULIEN C. The enigma of Mayer waves: facts and models[J]. Cardiovasc Res, 2006, 70(1): 12-21.
pmid: 16360130 |
[27] | 桑妮, 张璇, 朱玲, 等. 任务导向性功能性训练对脑卒中偏瘫患者肢体功能的改善效果[J]. 中国医药导报, 2021, 18(36): 154-157. |
SANG N, ZHAHG X, ZHU L, et al. Improvement effect of task-oriented functional training on limb function in stroke patients with hemiplegia[J]. Chin Med Herald, 2021, 18(36): 154-157. | |
[28] | BOSCH J, O'DONNELL M J, BARRECA S, et al. Does task-oriented practice improve upper extremity motor recovery after stroke? A systematic review[J]. ISRN Stroke, 2014, 2014: 1-10. |
[29] |
TURTON A J, CUNNINGHAM P, VAN WIJCK F, et al. Home-based reach-to-grasp training for people after stroke is feasible: a pilot randomised controlled trial[J]. Clin Rehabil, 2017, 31(7): 891-903.
doi: 10.1177/0269215516661751 pmid: 27470470 |
[30] | LEE H C, KUO F L, LIN Y N, et al. Effects of robot-assisted rehabilitation on hand function of people with stroke: a randomized, crossover-controlled, assessor-blinded study[J]. Am J Occup Ther, 2021, 75(1): 7501205020p1-7501205020p11. |
[31] |
TORRISI M, MAGGIO M G, COLA M, et al. Beyond motor recovery after stroke: the role of hand robotic rehabilitation plus virtual reality in improving cognitive function[J]. J Clin Neurosci, 2021, 92(9859): 11-16.
doi: 10.1016/j.jocn.2021.07.053 |
[32] | 骆丽, 黄宋余, 邹晶晶, 等. 运动想象疗法联合任务导向性训练对脑卒中偏瘫患者上肢运动功能的影响[J]. 按摩与康复医学, 2022, 13(9): 14-17. |
LUO L, HUANG S Y, ZOU J J, et al. Effect of motor imagery combined with task oriented training on upper limb motor function of stroke patients[J]. Chin Manipulat Rehabil, 2022, 13(9): 14-17. | |
[33] | 赵琴, 费世早, 方芬, 等. 高频重复经颅磁刺激联合任务导向性训练对脑卒中后偏瘫患者上肢运动功能康复效果的影响[J]. 实用心脑肺血管病杂志, 2022, 30(1): 113-116, 123. |
ZHAO Q, FEI S Z, FANG F, et al. Impact on rehabilitation effects of high-frequency repetitive transcranial magnetic stimulation combined with task oriented training on upper limb motor function in patients with hemiplegia after stroke[J]. Pract J Cardiac Cereb Pneum Vasc Dis, 2022, 30(1): 113-116, 123. | |
[34] | 梁明, 徐奕鹏, 曲源, 等. 基于3D环境的虚拟现实任务导向训练在脑卒中患者平衡功能康复中的应用[J]. 临床神经病学杂志, 2021, 34(5): 348-351. |
LIANG M, XU Y P, QU Y, et al. Application of virtual reality task oriented training based on 3D environments balance rehabilitation in stroke patients[J]. J Clin Neurol, 2021, 34(5): 348-351. | |
[35] | 孙丽春, 王亚苗, 吴乾利, 等. A型肉毒毒素结合任务导向训练治疗脑卒中后上肢痉挛[J]. 中国临床研究, 2020, 33(10): 1377-1382. |
SUN L C, WANG Y M, WU Q L, et al. Botulinum toxin type A combined with task-oriented training in the treatment of upper limb spasticity after stroke[J]. Chin J Clin Res, 2020, 33(10): 1377-1382. | |
[36] |
HUNG J W, YEN C L, CHANG K C, et al. A pilot randomized controlled trial of botulinum toxin treatment combined with robot-assisted therapy, mirror therapy, or active control treatment in patients with spasticity following stroke[J]. Toxins (Basel), 2022, 14(6): 415.
doi: 10.3390/toxins14060415 |
[37] | 胡非非, 王磊磊, 罗鑫. 头针联合任务导向性训练对脑卒中下肢运动功能的影响[J]. 中国医药导报, 2020, 17(14): 82-85. |
HU F F, WANG L L, LUO X. Effect of head needle combined with task orientation training on lower limb motor function in stroke[J]. Chin Med Herald, 2020, 17(14): 82-85. | |
[38] | 梁森, 蔡庆, 陈曦, 等. 任务导向训练改善脑卒中患者上肢运动功能和日常生活能力的系统评价[J]. 中华物理医学与康复杂志, 2021, 43(8): 744-747. |
LIANG S, CAI Q, CHEN X, et al. Chin J Phys Med Rehabil, 2021, 43(8): 744-747. | |
[39] |
BAJAJ S, DRAKE D, BUTLER A J, et al. Oscillatory motor network activity during rest and movement: an fNIRS study[J]. Front Syst Neurosci, 2014, 8: 13.
doi: 10.3389/fnsys.2014.00013 pmid: 24550793 |
[40] |
BUETEFISCH C M. Role of the contralesional hemisphere in post-stroke recovery of upper extremity motor function[J]. Front Neurol, 2015, 6: 214.
doi: 10.3389/fneur.2015.00214 pmid: 26528236 |
[41] |
REHME A K, FINK G R, VON CRAMON D Y, et al. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal fMRI[J]. Cereb Cortex, 2011, 21(4): 756-768.
doi: 10.1093/cercor/bhq140 pmid: 20801897 |
[42] |
FAVRE I, ZEFFIRO T A, DETANTE O, et al. Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis[J]. Stroke, 2014, 45(4): 1077-1083.
doi: 10.1161/STROKEAHA.113.003168 pmid: 24525953 |
[43] |
REHME A K, GREFKES C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans[J]. J Physiol, 2013, 591(1): 17-31.
doi: 10.1113/jphysiol.2012.243469 |
[44] |
GREFKES C, FINK G R. Connectivity-based approaches in stroke and recovery of function[J]. Lancet Neurol, 2014, 13(2): 206-216.
doi: 10.1016/S1474-4422(13)70264-3 pmid: 24457190 |
[45] |
VIDAL A C, BANCA P, PASCOAL A G, et al. Bilateral versus ipsilesional cortico-subcortical activity patterns in stroke show hemispheric dependence[J]. [ahead of print]. Int J Stroke, 2018. doi: 10.1177/1747493018767164.
doi: 10.1177/1747493018767164 |
[46] | LIEW S L, GARRISON K A, ITO K L, et al. Laterality of poststroke cortical motor activity during action observation is related to hemispheric dominance[J]. Neural Plast, 2018, 2018: 3524960. |
[47] |
YUAN Z, XU W, BAO J, et al. Task-state cortical motor network characteristics by functional near-infrared spectroscopy in subacute stroke show hemispheric dominance[J]. Front Aging Neurosci, 2022, 14: 932318.
doi: 10.3389/fnagi.2022.932318 |
[48] |
LU K, XU G, LI W, et al. Frequency-specific functional connectivity related to the rehabilitation task of stroke patients[J]. Med Phys, 2019, 46(4): 1545-1560.
doi: 10.1002/mp.13398 pmid: 30675729 |
[49] |
ARUN K M, SMITHA K A, SYLAJA P N, et al. Identifying resting-state functional connectivity changes in the motor cortex using fNIRS during recovery from stroke[J]. Brain Topogr, 2020, 33(6): 710-719.
doi: 10.1007/s10548-020-00785-2 |
[50] |
HARVEY R L, EDWARDS D, DUNNING K, et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke[J]. Stroke, 2018, 49(9): 2138-2146.
doi: 10.1161/STROKEAHA.117.020607 pmid: 30354990 |
[51] |
YANG Y, PAN H, PAN W, et al. Repetitive transcranial magnetic stimulation on the affected hemisphere enhances hand functional recovery in subacute adult stroke patients: a randomized trial[J]. Front Aging Neurosci, 2021, 13: 636184.
doi: 10.3389/fnagi.2021.636184 |
[52] |
BERNHARDT J, HAYWARD K S, KWAKKEL G, et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the Stroke Recovery and Rehabilitation Roundtable taskforce[J]. Int J Stroke, 2017, 12(5): 444-450.
doi: 10.1177/1747493017711816 pmid: 28697708 |
[53] |
ISSARD C, GERVAIN J. Variability of the hemodynamic response in infants: influence of experimental design and stimulus complexity[J]. Dev Cogn Neurosci, 2018, 33: 182-193.
doi: 10.1016/j.dcn.2018.01.009 |
[54] |
BENDAHAN D, CHATEL B, JUE T. Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exercising finger flexor muscles[J]. Am J Physiol Regul Integr Comp Physiol, 2017, 313(6): R740-R753.
doi: 10.1152/ajpregu.00203.2017 |
[1] | 林娜, 高菡璐, 卢惠苹, 陈燕清, 郑军凡, 陈述荣. 虚拟现实技术对脑卒中上肢功能影响的弥散张量成像研究[J]. 《中国康复理论与实践》, 2024, 30(1): 61-67. |
[2] | 王昊懿, 史亚伟, 鲁俊, 许光旭. 主观垂直感知障碍对脑卒中患者功能影响的回顾性研究[J]. 《中国康复理论与实践》, 2024, 30(1): 68-73. |
[3] | 陈珺雯, 陈谦, 陈程, 李淑月, 刘玲玲, 吴存书, 龚翔, 鲁俊, 许光旭. 改良八段锦身体活动对脑卒中患者心肺功能、运动功能和日常生活活动能力的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 74-80. |
[4] | 胡永林, 马颖, 窦超, 陆安民, 江小鸽, 宋新建, 肖玉华. 肩部控制训练联合神经松动术对脑卒中偏瘫患者肩痛及上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 81-86. |
[5] | 王贺, 韩靓, 阚梦凡, 于少泓. 电刺激治疗脑卒中后肩手综合征有效性的系统评价与Meta分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1048-1056. |
[6] | 孙藤方, 任梦婷, 杨琳, 王耀霆, 王红雨, 闫兴洲. 高压氧治疗联合重复外周磁刺激干预脑卒中患者踝运动功能和平衡能力的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 875-881. |
[7] | 王亚楠, 刘西花. 脑卒中偏瘫患者主观和客观平衡功能测量的相关性及预测效能[J]. 《中国康复理论与实践》, 2023, 29(8): 890-895. |
[8] | 王海云, 王寅, 周信杰, 何爱群. 基于“中枢-外周-中枢”理论的经颅直流电刺激结合针刺干预脑卒中患者中枢及上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 919-925. |
[9] | 陈怡婷, 王倩, 崔慎红, 李映彩, 张思鈺, 魏衍旭, 任慧, 冷军, 陈斌. 双侧序贯重复经颅磁刺激干预脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 926-932. |
[10] | 李振亚, 孙洁, 郭鹏飞, 王光明. 脑卒中患者口期和咽期吞咽功能改变与误吸的相关性:基于电视透视吞咽检查[J]. 《中国康复理论与实践》, 2023, 29(8): 933-939. |
[11] | 崔尧, 丛芳, 黄富表, 曾明, 颜如秀. 不同镜像神经元训练策略下脑与肌肉的活动特征:基于近红外光谱与表面肌电图技术[J]. 《中国康复理论与实践》, 2023, 29(7): 782-790. |
[12] | 华玲, 张一楠, 郑玉, 孙俏仪, 房辉, 宋达. 手控节律音乐治疗对脑卒中后单侧空间忽略的效果[J]. 《中国康复理论与实践》, 2023, 29(7): 833-838. |
[13] | 蒋孝翠, 刘臻, 苏清伦, 赵秦, 夏晓昧, 陆飞. 间歇性Theta节律经颅磁刺激对脑卒中后非流利性失语的影响[J]. 《中国康复理论与实践》, 2023, 29(7): 839-843. |
[14] | 许苗苗, 李楠, 应颖, 杨凯翔, 杨婧瑞, 李杰, 邱彦群. 重复外周磁刺激对左右颈7神经交叉移位术后脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(6): 686-690. |
[15] | 郑莉, 鲍治诚, 张琪, 任绪艳, 苏敏. 经皮耳迷走神经电刺激结合康复机器人训练对脑卒中患者上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(6): 691-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|