| [1] | BACKUS D. Exploring the potential for neural recovery after incomplete tetraplegia through nonsurgical interventions[J]. PM R, 2010, 2(12 Suppl 2): S279-S285. doi: 10.1016/j.pmrj.2010.10.004
 | 
																													
																						| [2] | WANG Y, LUO H, LIU Y, et al.  Multimodal rehabilitation promotes axonal sprouting and functional recovery in a murine model of spinal cord injury (SCI)[J]. Neurosci Lett, 2023, 795: 137029. doi: 10.1016/j.neulet.2022.137029
 | 
																													
																						| [3] | WALSH C M, GULL K, DOOLEY D. Motor rehabilitation as a therapeutic tool for spinal cord injury: new perspectives in immunomodulation[J]. Cytokine Growth Factor Rev, 2023, 69: 80-89. doi: 10.1016/j.cytogfr.2022.08.005
 | 
																													
																						| [4] | JACOBS P L, NASH M S. Exercise recommendations for individuals with spinal cord injury[J]. Sports Med, 2004, 34(11): 727-751. doi: 10.2165/00007256-200434110-00003
																																					pmid: 15456347
 | 
																													
																						| [5] | BALDI S, NUNZI M, BRINA C D. Efficacy of a task-based training approach in the rehabilitation of three children with poor handwriting quality: a pilot study[J]. Percept Mot Skills, 2015, 120(1): 323-335. doi: 10.2466/10.15.PMS.120v15x5
 | 
																													
																						| [6] | TORRES-ESPIN A, FORERO J, FENRICH K K, et al.  Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury[J]. Brain, 2018, 141(7): 1946-1962. doi: 10.1093/brain/awy128
 | 
																													
																						| [7] | FENRICH K K, HALLWORTH B W, VAVREK R, et al.  Self-directed rehabilitation training intensity thresholds for efficient recovery of skilled forelimb function in rats with cervical spinal cord injury[J]. Exp Neurol, 2021, 339: 113543. doi: 10.1016/j.expneurol.2020.113543
 | 
																													
																						| [8] | CABRAL M E, BALTAR A, BORBA R, et al.  Transcranial direct current stimulation: before, during, or after motor training?[J]. NeuroReport, 2015, 26(11): 618-622. doi: 10.1097/WNR.0000000000000397
																																					pmid: 26049257
 | 
																													
																						| [9] | LEE J H, STREIJGER F, TIGCHELAAR S, et al.  A contusive model of unilateral cervical spinal cord injury using the infinite horizon impactor[J]. J Vis Exp, 2012(65): 3313. | 
																													
																						| [10] | 潘璐, 谭波涛, 罗美玲, 等. 任务导向性康复训练对小鼠脊髓损伤后神经回路可塑性及前肢运动功能的影响[J]. 中国康复理论与实践, 2020, 26(10): 1152-1160. doi: 10.3969/j.issn.1006-9771.2020.10.006
 | 
																													
																						|  | PAN L, TAN B T, LUO M L, et al.  Effect of task-based rehabilitation training on neural circuit plasticity and forelimb motor function post spinal cord injury in mice[J]. Chin J Rehabil Theory Pract, 2020, 26(10): 1152-1160. | 
																													
																						| [11] | LI F, ZHOU M W. MicroRNAs in contusion spinal cord injury: pathophysiology and clinical utility[J]. Acta Neurol Belg, 2019, 119(1): 21-27. doi: 10.1007/s13760-019-01076-9
																																					pmid: 30790223
 | 
																													
																						| [12] | YUE J K, WINKLER E A, RICK J W, et al.  Update on critical care for acute spinal cord injury in the setting of polytrauma[J]. Neurosurg Focus, 2017, 43(5): E19. doi: 10.3171/2017.7.FOCUS17396
 | 
																													
																						| [13] | DUNHAM K A, SIRIPHORN A, CHOMPOOPONG S, et al.  Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rats[J]. J Neurotrauma, 2010, 27(11): 2091-2106. doi: 10.1089/neu.2010.1424
 | 
																													
																						| [14] | MATTUCCI S, SPEIDEL J, LIU J, et al.  Basic biomechanics of spinal cord injury: how injuries happen in people and how animal models have informed our understanding[J]. Clin Biomech (Bristol, Avon), 2019, 64: 58-68. doi: 10.1016/j.clinbiomech.2018.03.020
 | 
																													
																						| [15] | 曲斯伟, 宋为群. 非侵入性脑刺激技术在卒中后抑郁治疗中的研究进展[J]. 中国脑血管病杂志, 2019, 16(8): 432-437. | 
																													
																						|  | QU S W, SONG W Q. Research progresses of noninvasive brain stimulation for the treatment of post-stroke depression[J]. Chin J Cerebrovasc Dis, 2019, 16(8): 432-437. | 
																													
																						| [16] | 乔淇淇, 王新, 康灵, 等. 经颅直流电刺激技术对运动表现影响的国外研究进展[J]. 体育科学, 2020, 40(6): 83-95. | 
																													
																						|  | QIAO Q Q, WANG X, KANG L, et al.  Foreign research progress on the effect of transcranial direct current stimulation on sports performance[J]. Chin Sport Sci, 2020, 40(6): 83-95. | 
																													
																						| [17] | DE ARAÚJO A V L, RIBEIRO F P G, MASSETTI T, et al.  Effectiveness of anodal transcranial direct current stimulation to improve muscle strength and motor functionality after incomplete spinal cord injury: a systematic review and meta-analysis[J]. Spinal Cord, 2020, 58(6): 635-646. doi: 10.1038/s41393-020-0438-2
																																					pmid: 32066873
 | 
																													
																						| [18] | YOZBATIRAN N, KESER Z, DAVIS M, et al.  Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: a proof of concept sham-randomized clinical study[J]. NeuroRehabilitation, 2016, 39(3): 401-411. doi: 10.3233/NRE-161371
																																					pmid: 27589510
 | 
																													
																						| [19] | ZHAN Z, PAN L, ZHU Y, et al.  Moderate-intensity treadmill exercise promotes mtor-dependent motor cortical neurotrophic factor expression and functional recovery in a murine model of crush spinal cord injury (SCI)[J]. Mol Neurobiol, 2023, 60(2): 960-978. doi: 10.1007/s12035-022-03117-6
 | 
																													
																						| [20] | GENSEL J C, TOVAR C A, HAMERS F P, et al.  Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats[J]. J Neurotrauma, 2006, 23(1): 36-54. doi: 10.1089/neu.2006.23.36
 | 
																													
																						| [21] | HUANG Z, LI R, LIU J, et al.  Longitudinal electrophysiological changes after cervical hemi-contusion spinal cord injury in rats[J]. Neurosci Lett, 2018, 664: 116-122. doi: S0304-3940(17)30917-5
																																					pmid: 29138091
 | 
																													
																						| [22] | CAMUZARD O, LU J C, ABBADI S E, et al.  The impact of exercise on motor recovery after long nerve grafting-experimental rat study[J]. [ahead of print]. J Reconstr Microsurg, 2023. doi: 10.1055/s-0043-1761207. doi: 10.1055/s-0043-1761207
 | 
																													
																						| [23] | CHEN K, LIU J, ASSINCK P, et al.  Differential histopathological and behavioral outcomes eight weeks after rat spinal cord injury by contusion, dislocation, and distraction mechanisms[J]. J Neurotrauma, 2016, 33(18): 1667-1684. doi: 10.1089/neu.2015.4218
 |