《中国康复理论与实践》 ›› 2024, Vol. 30 ›› Issue (8): 957-964.doi: 10.3969/j.issn.1006-9771.2024.08.011
收稿日期:
2024-05-14
修回日期:
2024-06-21
出版日期:
2024-08-25
发布日期:
2024-09-11
通讯作者:
郭峰,男,教授,主要研究方向:运动控制与脑研究。 E-mail: guofeng_first@163.com
作者简介:
牛茂林(1998-),男,汉族,山东桓台县人,硕士,治疗师,主要研究方向:运动与脑功能研究。
基金资助:
NIU Maolin1, ZHAO Tan1, LIU Xiaoli2, GUO Feng1()
Received:
2024-05-14
Revised:
2024-06-21
Published:
2024-08-25
Online:
2024-09-11
Supported by:
摘要:
目的 观察高精度经颅直流电刺激(HD-tDCS)不同刺激时机(在线刺激、离线刺激)对健康成年人手指运动技能学习效果的影响。
方法 2022年3月至11月,在沈阳体育学院招募右利手男性受试者31例,随机分为3组。分别在HD-tDCS在线刺激、离线刺激以及假刺激下,完成顺序视觉等距捏力任务学习,共3 d。观察每天运动技能学习量、运动技能学习总量和速度-精度函数(SAF)。
结果 各组运动技能学习量均增加,在线刺激组增加最多(F = 24.692, P < 0.001),且第3天时,显著高于离线刺激组(t = 4.732, P < 0.001)和假刺激组(t = 3.839, P = 0.004)。运动技能学习总量:在线刺激组 = 离线刺激组 > 假刺激组。在线刺激组SAF高于离线刺激组和假刺激组。
结论 HD-tDCS刺激可提高健康受试者手指运动技能学习效果,在线刺激效果最佳。
中图分类号:
牛茂林, 赵潭, 刘晓丽, 郭峰. 在线和离线高精度经颅直流电刺激对健康成年人手指运动技能学习效果的随机对照试验[J]. 《中国康复理论与实践》, 2024, 30(8): 957-964.
NIU Maolin, ZHAO Tan, LIU Xiaoli, GUO Feng. Effect of online and offline high definition transcranial direct current stimulation on finger motor skill learning in healthy adults: a randomized controlled trial[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(8): 957-964.
表5
各组运动技能学习量时间效应事后LSD差异检验结果"
组别 | 时间 | 时间 | 平均值差 | P值 | 95%CI | |
---|---|---|---|---|---|---|
上限 | 下限 | |||||
在线刺激组 | 第1天 | 第2天 | -1.348 | < 0.001 | -1.894 | -0.802 |
第1天 | 第3天 | -2.198 | < 0.001 | -2.856 | -1.540 | |
第2天 | 第3天 | -0.850 | < 0.001 | -1.198 | -0.502 | |
离线刺激组 | 第1天 | 第2天 | -1.098 | 0.001 | -1.644 | -0.552 |
第1天 | 第3天 | -1.290 | 0.001 | -1.948 | -0.632 | |
第2天 | 第3天 | -0.192 | 0.258 | -0.539 | 0.156 | |
假刺激组 | 第1天 | 第2天 | -1.188 | < 0.001 | -1.734 | -0.642 |
第1天 | 第3天 | -1.445 | < 0.001 | -2.103 | -0.787 | |
第2天 | 第3天 | -0.257 | 0.137 | -0.604 | 0.091 |
表6
各天运动技能学习量组别效应事后LSD差异检验结果"
时间 | 组别 | 组别 | 平均值差 | P值 | 95%CI | |
---|---|---|---|---|---|---|
上限 | 下限 | |||||
第1天 | 在线刺激组 | 离线刺激组 | -0.052 | 0.917 | -1.097 | 0.993 |
在线刺激组 | 假刺激组 | -0.187 | 0.709 | -1.232 | 0.858 | |
离线刺激组 | 假刺激组 | -0.135 | 0.787 | -1.180 | 0.910 | |
第2天 | 在线刺激组 | 离线刺激组 | 0.198 | 0.377 | -0.266 | 0.663 |
在线刺激组 | 假刺激组 | -0.027 | 0.904 | -0.491 | 0.438 | |
离线刺激组 | 假刺激组 | -0.225 | 0.318 | -0.689 | 0.239 | |
第3天 | 在线刺激组 | 离线刺激组 | 0.857 | < 0.001 | 0.507 | 1.206 |
在线刺激组 | 假刺激组 | 0.567 | 0.004 | 0.217 | 0.916 | |
离线刺激组 | 假刺激组 | -0.290 | 0.097 | -0.640 | 0.060 |
[1] | WOLPERT D M, GHAHRAMANI Z, JORDAN M I. An internal model for sensorimotor integration[J]. Science (New York, NY), 1995, 269(5232): 1880-1882. |
[2] | KARNI A, MEYER G, JEZZARD P, et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning[J]. Nature, 1995, 377(6545): 155-158. |
[3] |
DAYAN E, COHEN L G. Neuroplasticity subserving motor skill learning[J]. Neuron, 2011, 72(3): 443-454.
doi: 10.1016/j.neuron.2011.10.008 pmid: 22078504 |
[4] |
孙凤宝, 章晓峰, 金振华, 等. 运动前皮质阳极经颅直流电刺激对重症脑卒中患者上肢运动功能的效果[J]. 中国康复理论与实践, 2023, 29(11): 1333-1338.
doi: 10.3969/j.issn.1006-9771.2023.11.011 |
SUN F B, ZHANG X F, JIN Z H, et al. Effect of anodal transcrania direct current stimulation on premotor cortex on upper limb motor function in patients with severe stroke[J]. Chin J Rehabil Theroy Pract, 2023, 29(11): 1333-1338. | |
[5] |
VITALE F, PADRÓN I, AVENANTI A, et al. Enhancing motor brain activity improves memory for action language: a tDCS study[J]. Cereb Cortex, 2021, 31(3): 1569-1581.
doi: 10.1093/cercor/bhaa309 pmid: 33136142 |
[6] |
HAZIME F A, DA CUNHA R A, SOLIAMAN R R, et al. Anodal transcranial direct current stimulation (TDCS) increases isometric strength of shoulder rotators muscles in handball players[J]. Int J Sports Phys Ther, 2017, 12(3): 402-407.
pmid: 28593094 |
[7] | 沈斌, 肖松林, 于常晓, 等. 经颅直流电刺激对下肢耐力表现影响的系统综述[J]. 医用生物力学, 2023, 38(1): 202-208. |
SHEN B, XIAO S L, YU C X, er al. Effects of transcranial direct current stimulation on endurance performance of lower limbs: a systematic review[J]. J Med Biomech, 2023, 38(1): 202-208. | |
[8] | 陈云, 熊艺妩, 朱志强, 等. 高精度经颅直流电刺激对肌肉力量及运动单元募集数量的影响[J]. 医用生物力学, 2021, 36(S1): 125. |
[9] | POLLOK B, SCHMITZ-JUSTEN C, KRAUSE V. Cathodal transcranial direct current stimulation (tDCS) applied to the left premotor cortex Interferes with explicit reproduction of a motor sequence[J]. Brain Sci, 2021, 11(2): 207. |
[10] |
YAMAGUCHI T, MORIYA K, TANABE S, et al. Transcranial direct-current stimulation combined with attention increases cortical excitability and improves motor learning in healthy volunteers[J]. J Neuroeng Rehabil, 2020, 17(1): 23.
doi: 10.1186/s12984-020-00665-7 pmid: 32075667 |
[11] |
ZHU F F, YEUNG A Y, POOLTON J M, et al. Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task[J]. Brain Stimul, 2015, 8(4): 784-786.
doi: 10.1016/j.brs.2015.02.005 pmid: 25857398 |
[12] |
STAGG C J, JAYARAM G, PASTOR D, et al. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning[J]. Neuropsychologia, 2011, 49(5): 800-804.
doi: S0028-3932(11)00071-6 pmid: 21335013 |
[13] |
KAMINSKI E, HOFF M, SEHM B, et al. Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning[J]. Neurosci Lett, 2013, 552: 76-80.
doi: 10.1016/j.neulet.2013.07.034 pmid: 23933205 |
[14] | NGUEMENI C, STIEHL A, HIEW S, et al. No impact of cerebellar anodal transcranial direct current stimulation at three different timings on motor learning in a Sequential Finger-Tapping Task[J]. Front Hum Neurosci, 2021, 15: 631517. |
[15] |
STAGG C J, NITSCHE M A. Physiological basis of transcranial direct current stimulation[J]. Neuroscientist, 2011, 17(1): 37-53.
doi: 10.1177/1073858410386614 pmid: 21343407 |
[16] | MEEK A W, GREENWELL D, POSTON B, et al. Anodal tDCS accelerates on-line learning of dart throwing[J]. Neurosci Lett, 2021, 764: 136211. |
[17] | WU D, ZHANG P, WANG Y, et al. Anodal online transcranial direct current stimulation facilitates visual motion perceptual learning[J]. Eur J Neurosci, 2023, 57(3): 479-489. |
[18] |
BUCHWALD A, CALHOUN H, RIMIKIS S, et al. Using tDCS to facilitate motor learning in speech production: the role of timing[J]. Cortex, 2019, 111: 274-285.
doi: S0010-9452(18)30386-1 pmid: 30551048 |
[19] |
CABRAL M E, BALTAR A, BORBA R, et al. Transcranial direct current stimulation: before, during, or after motor training?[J]. Neuroreport, 2015, 26(11): 618-622.
doi: 10.1097/WNR.0000000000000397 pmid: 26049257 |
[20] | KIM H, KING B R, VERWEY W B, et al. Timing of transcranial direct current stimulation at M1 does not affect motor sequence learning[J]. Heliyon, 2024, 10(4): e25905. |
[21] | TEDLA J S, SANGADALA D R, REDDY R S, et al. High-definition transcranial direct current stimulation and its effects on cognitive function: a systematic review[J]. Cereb Cortex, 2023, 33(10): 6077-6089. |
[22] |
EDWARDS D, CORTES M, DATTA A, et al. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS[J]. NeuroImage, 2013, 74: 266-275.
doi: 10.1016/j.neuroimage.2013.01.042 pmid: 23370061 |
[23] | KUO H I, BIKSON M, DATTA A, et al. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study[J]. Brain Stimul, 2013, 6(4): 644-648. |
[24] | REIS J, SCHAMBRA H M, COHEN L G, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation[J]. Proc Natl Acad Sci U S A, 2009, 106(5): 1590-1595. |
[25] | CUYPERS K, LEENUS D J, VAN DEN BERG F E, et al. Is motor learning mediated by tDCS intensity?[J]. PLoS One, 2013, 8(6): e67344. |
[26] |
FAN J, VOISIN J, MILOT M H, et al. Transcranial direct current stimulation over multiple days enhances motor performance of a grip task[J]. Ann Phys Rehabil Med, 2017, 60(5): 329-333.
doi: S1877-0657(17)30107-0 pmid: 28797624 |
[27] | PASCUAL-LEONE A, NGUYET D, COHEN L G, et al. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills[J]. J Neurophysiol, 1995, 74(3): 1037-1045. |
[28] | MUELLBACHER W, ZIEMANN U, WISSEL J, et al. Early consolidation in human primary motor cortex[J]. Nature, 2002, 415(6872): 640-644. |
[29] |
RICHARDSON A G, OVERDUIN S A, VALERO-CABRÉ A, et al. Disruption of primary motor cortex before learning impairs memory of movement dynamics[J]. J Neurosci, 2006, 26(48): 12466-12470.
doi: 10.1523/JNEUROSCI.1139-06.2006 pmid: 17135408 |
[30] | HADIPOUR-NIKTARASH A, LEE C K, DESMOND J E, et al. Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex[J]. J Neurosci, 2007, 27(49): 13413-13419. |
[31] |
MINIUSSI C, HARRIS J A, RUZZOLI M. Modelling non-invasive brain stimulation in cognitive neuroscience[J]. Neurosci Biobehav Rev, 2013, 37(8): 1702-1712.
doi: 10.1016/j.neubiorev.2013.06.014 pmid: 23827785 |
[32] |
REIS J, FRITSCH B. Modulation of motor performance and motor learning by transcranial direct current stimulation[J]. Curr Opin Neurol, 2011, 24(6): 590-596.
doi: 10.1097/WCO.0b013e32834c3db0 pmid: 21968548 |
[33] |
WOLPERT D M, DIEDRICHSEN J, FLANAGAN J R. Principles of sensorimotor learning[J]. Nat Rev Neurosci, 2011, 12(12): 739-751.
doi: 10.1038/nrn3112 pmid: 22033537 |
[34] |
SCHAMBRA H M, ABE M, LUCKENBAUGH D A, et al. Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study[J]. J Neurophysiol, 2011, 106(2): 652-661.
doi: 10.1152/jn.00210.2011 pmid: 21613597 |
[35] |
GALEA J M, VAZQUEZ A, PASRICHA N, et al. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns[J]. Cereb Cortex, 2011, 21(8): 1761-1770.
doi: 10.1093/cercor/bhq246 pmid: 21139077 |
[36] |
SAUCEDO MARQUEZ C M, ZHANG X, SWINNEN S P, et al. Task-specific effect of transcranial direct current stimulation on motor learning[J]. Front Hum Neurosci, 2013, 7: 333.
doi: 10.3389/fnhum.2013.00333 pmid: 23847505 |
[1] | 吕倩倩, 王萌萌, 吴易凌, 杨晓真, 马玲玲, 赵亚萍, 肖瑶, 桑杲. 早期介入丹佛模式基础上联合神经反馈训练对孤独症谱系障碍儿童效果的随机对照试验[J]. 《中国康复理论与实践》, 2024, 30(8): 914-921. |
[2] | 于婷婷, 蔡福良, 缪桂华, 顾晨, 彭媛. 基于个性优势的结构化治疗与教育对缺血性脑卒中康复效果的随机对照试验[J]. 《中国康复理论与实践》, 2024, 30(8): 965-971. |
[3] | 梁天佳, 龙耀斌, 陆丽燕, 周金英, 黄福才, 黄林鹏, 邬映超, 龙耀翔, 韦小翠, 柳忠. 绳带辅助本体感觉神经肌肉促进技术训练联合绳带辅助脑机接口训练对脑卒中偏瘫上肢康复效果的随机对照试验[J]. 《中国康复理论与实践》, 2024, 30(8): 972-978. |
[4] | 何爱群, 黎景波, 何茂莉, 叶思媚, 宋秋爽, 刘海鸥, 谢有书. 作业技能再学习策略对脑卒中偏瘫上肢功能效果的随机对照试验[J]. 《中国康复理论与实践》, 2024, 30(7): 823-830. |
[5] | 陈晨, 孟兆祥, 杨康, 张敏杰, 左亚南, 王奎, 张熙斌, 全逸峰, 金星. 智能镜像手套任务导向性训练联合低频重复经颅磁刺激对脑卒中患者手功能效果的随机对照试验[J]. 《中国康复理论与实践》, 2024, 30(7): 831-838. |
[6] | 丹禹钦, 苏佳宁, 丁懿, 王雪妍, 许铛瀚, 王菁华, 吴雨静, 张梦圆, 尹萌, 鹿海峰, 于功昌, 李丽. 悬吊推拿运动技术对老年腰椎间盘突出症患者恐动症效果的随机对照试验:基于脑-骨轴理论[J]. 《中国康复理论与实践》, 2024, 30(7): 861-868. |
[7] | 彭娟,王洁萍,黄炜,樊必双,虞记华,曾今,黄丽衡,安丽娟,胥方元. 阈值负荷吸气肌训练对慢性阻塞性肺疾病患者呼吸功能、运动功能及生活质量影响的Meta分析[J]. 《中国康复理论与实践》, 2022, 28(9): 1022-1031. |
[8] | 吴福霞, 李艳飞, 郑忠礼, 魏志鹏, 邱卓英, 杨克虎. 抑郁症患者运动干预的证据图谱[J]. 《中国康复理论与实践》, 2021, 27(12): 1412-1421. |
[9] | 陈影, 张爽, 余珍, 潘利妞, 张伟宏. 运动对 |
[10] | 侯永康, 杜双, 邓佩琳, 朱江, 吴宗辉, 王朴. 肌内效贴对膝骨关节炎治疗效果的 |
[11] | 王筱筱, 段宏为, 林航, 王爱红. 虚拟现实技术对帕金森病患者平衡和日常生活能力影响的Meta分析[J]. 《中国康复理论与实践》, 2017, 23(12): 1443-1449. |
[12] | 张杰1,王强2,3,王增春2,3,任自刚2,3,熊巍2,3,刘海泉2,3,王俊杰2,3,范婷婷2,3. 膀胱内注射肉毒毒素对膀胱疼痛综合征疼痛程度影响的Meta分析①[J]. 《中国康复理论与实践》, 2016, 22(10): 1222-1226. |
[13] | 张丽;瓮长水;赵占波 . 全身振动训练对老年人下肢肌肉力量及功能干预效果的Meta分析[J]. 《中国康复理论与实践》, 2015, 21(10): 1222-1228. |
[14] | 朱毅;郭佳宝;顾一煌;谢斌;金宏柱. 阴极经颅直流电刺激改善脑卒中患者上肢功能障碍的系统评价[J]. 《中国康复理论与实践》, 2014, 20(4): 311-317. |
[15] | 李建民;郝正玮;赵雅宁. 不同步态训练方法对慢性不完全性脊髓损伤患者步行功能效果的Meta分析[J]. 《中国康复理论与实践》, 2013, 19(2): 183-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|