《中国康复理论与实践》 ›› 2024, Vol. 30 ›› Issue (12): 1452-1460.doi: 10.3969/j.issn.1006-9771.2024.12.011
梁艳华1,2, 张琦1,2(), 胡晓诗1,2, 李晓松1,2, 岳青1,2, 周天添1,2, 李思佳1,2, 冯啊美1,2
收稿日期:
2024-08-05
修回日期:
2024-11-19
出版日期:
2024-12-25
发布日期:
2024-12-30
通讯作者:
张琦
E-mail:13501320729@163.com
作者简介:
梁艳华(1988-),女,汉族,陕西咸阳市人,主管技师,主要研究方向:儿童运动康复。
基金资助:
LIANG Yanhua1,2, ZHANG Qi1,2(), HU Xiaoshi1,2, LI Xiaosong1,2, YUE Qing1,2, ZHOU Tiantian1,2, LI Sijia1,2, FENG Amei1,2
Received:
2024-08-05
Revised:
2024-11-19
Published:
2024-12-25
Online:
2024-12-30
Contact:
ZHANG Qi
E-mail:13501320729@163.com
Supported by:
摘要:
目的 观察深层肌肉刺激对痉挛型脑瘫儿童肌肉结构和功能的影响。
方法 2023年1月至2024年3月,北京博爱医院痉挛型脑瘫儿童30例,随机分为对照组(n = 15)和干预组(n = 15)。两组均接受常规康复治疗,干预组增加深层肌肉刺激,共4周。训练前后采用超声诊断系统对腓肠肌行横切和纵切两个方向检查,比较肌纤维长度、肌肉羽状角度、肌肉厚度和肌肉横截面积,采用改良Ashworth量表(MAS)评定患侧下肢肌张力,采用粗大运动功能测试(GMFM)的D区和E区评价运动功能。
结果 治疗后,两组肌纤维长度和肌肉羽状角度均显著改善(|t| > 6.329, P < 0.001),且干预组优于对照组(|t| > 2.347, P < 0.05);两组MAS评分均降低(t > 2.432, P < 0.05),且干预组低于对照组(t = 2.140, P < 0.05);两组GMFM D区、E区评分均显著增加(|t| > 8.473, P < 0.001),且干预组优于对照组(|t| > 2.191, P < 0.05)。
结论 深层肌肉刺激可以改善痉挛型脑瘫儿童腓肠肌肌纤维长度和肌肉羽状角度,改善下肢痉挛和运动功能。
中图分类号:
梁艳华, 张琦, 胡晓诗, 李晓松, 岳青, 周天添, 李思佳, 冯啊美. 深层肌肉刺激对痉挛型脑瘫儿童肌肉结构和功能的效果[J]. 《中国康复理论与实践》, 2024, 30(12): 1452-1460.
LIANG Yanhua, ZHANG Qi, HU Xiaoshi, LI Xiaosong, YUE Qing, ZHOU Tiantian, LI Sijia, FENG Amei. Effect of deep muscle stimulation on muscle structure and function in children with spastic cerebral palsy[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(12): 1452-1460.
[1] | 中国康复医学会儿童康复专业委员会, 中国残疾人康复协会小儿脑性瘫痪康复专业委员会, 中国医师协会康复医师分会儿童康复专业委员会, 等. 中国脑性瘫痪康复指南(2022)第一章:概论[J]. 中华实用儿科临床杂志, 2022, 37(12): 887-892. |
Children's Rehabilitation Professional Committee of China Rehabilitation Medical Association, Children's Cerebral Palsy Rehabilitation Professional Committee of China Disabled Persons' Rehabilitation Association, Children's Rehabilitation Professional Committee of Rehabilitation Physicians Branch of Chinese Medical Doctor Association, et al. Chapter I: Introduction of Chinese Cerebral Palsy Rehabilitation Guide (2022)[J]. Chin J Prac Pediatr Clin Prac, 2022, 37(12): 887-892. | |
[2] | LIU W, HU Y, LI J, et al. Effect of virtual reality on balance function in children with cerebral palsy: a systematic review and meta-analysis[J]. Front Public Health, 2022, 10: 865474. |
[3] | SADOWSKA M, SARECKA-HUJAR B, KOPYTA I. Cerebral palsy: current opinions on definition, epidemiology, risk factors, classification and treatment options[J]. Neuropsychiatr Dis Treat, 2020, 16: 1505-1518. |
[4] | HANSSEN B, PEETERS N, VANDEKERCKHOVE I, et al. The contribution of decreased muscle size to muscle weakness in children with spastic cerebral palsy[J]. Front Neurol, 2021, 12: 692582. |
[5] | WU M, KIM J, GAEBLER-SPIRA D J, et al. Robotic resistance treadmill training improves locomotor function in children with cerebral palsy: a randomized controlled pilot study[J]. Arch Phys Med Rehabil, 2017, 98(11): 2126-2133. |
[6] | KAYA KELES C S, ATES F. Botulinum toxin intervention in cerebral palsy-induced spasticity management: projected and contradictory effects on skeletal muscles[J]. Toxins (Basel), 2022, 14(11): 772. |
[7] | 叶大勇. 深层肌肉刺激对脑卒中后下肢痉挛及肌肉形态的影响[D]. 长春: 吉林大学, 2017. |
YE D Y. Effects of deep muscle stimulation on spasm and muscle morphology of lower limbs after stroke[D]. Changchun: Jilin University, 2017. | |
[8] | OBST S J, BICKLL R, FLORANCE K, et al. The size and echogenicity of the tibialis anterior muscle is preserved in both limbs in young children with unilateral spastic cerebral palsy[J]. Disabil Rehabil, 2022, 44(14): 3430-3439. |
[9] | LIU W, WU H D, LING Y T, et al. Reliability and validity of assessing lower-limb muscle architecture of patients with cerebral palsy (CP) using ultrasound: a systematic review[J]. Clin Ultrasound, 2023, 51(7): 1212-1222. |
[10] | CHEN Y, HE L, XU K S, et al. Comparison of calf muscle architecture between Asian children with spastic cerebral palsy and typically developing peers[J]. PLoS One, 2018, 13(1): e0190642. |
[11] | WEIDE G, HUIJING P A, BAR-ON L, et al. Gastrocnemius medialis muscle geometry and extensibility in typically developing children and children with spastic paresis aged 6-13 years[J]. Front Physiol, 2020, 11: 528522. |
[12] | D'SOUZA A, BOLSTERLEE B, LANCASTER A, et al. Muscle architecture in children with cerebral palsy and anklecontractures: an investigation using diffusion tensor imaging[J]. Clin Biomech (Bristol, Avon), 2019, 68: 205. |
[13] |
KRUSE A, SCHRANZ C, TILP M, et al. Muscle and tendon morphology alterations in children and adolescents with mild forms of spastic cerebral palsy[J]. BMC Pediatr, 2018, 18(1): (1): 156.
doi: 10.1186/s12887-018-1129-4 pmid: 29743109 |
[14] | 冯川琳, 黄真. 超声成像技术在脑性瘫痪儿童腓肠肌评估中的临床应用进展[J]. 中国康复医学杂志, 2020, 35(5): 622-626. |
FENG C L, HUANG Z. Progress of clinical application of ultrasound imaging in the evaluation of gastrocnemius muscle in children with cerebral palsy[J]. Chin J Rehabil Med, 2020, 35(5): 622-626. | |
[15] | 杨光显, 缪吉, 梅强, 等. 深层肌肉刺激疗法对痉挛型双瘫患儿步态的影响[J]. 中国康复, 2020, 35(4): 194-196. |
YANG G X, MIAO J, MEI Q, et al. Effect of deep muscle stimulation therapy on gait of children with spastic diplegia[J]. Chin J Rehabil, 2020, 35(4): 194-196. | |
[16] | HÖSL M, KRUSE A, TILP M, et al. Impact of altered gastrocnemius morphometrics and fascicle behavior on walking patterns in children with spastic cerebral palsy[J]. Front Physiol, 2020, 11: 518134. |
[17] |
BOLSTEREE B, GANDEVIA S C, HERBERT R D. Ultrasound imaging of the human medial gastrocnemius muscle: how to orient the transducer so that muscle fascicles lie in the image plane[J]. J Biomech, 2016, 49(7): 1002-1008.
doi: S0021-9290(16)30149-X pmid: 26905734 |
[18] | ALONSO-FERNANDEZ D, FERNANDEZ-RODRIGUEZ R, ABALO-NÚÑEZ R. Changes in rectus femoris architecture induced by the reverse nordic hamstring exercises[J]. Sports Med Phys Fitness, 2019, 59(4): 640-647. |
[19] | ORANCHUK D J, HOPKINS W G, NELSON A R, et al. The effect of regional quadriceps anatomical parameters on angle-specific isometric torque expression[J]. Appl Physiol Nutr Metab, 2021, 46(4): 368-378. |
[20] | CHEON S, LEE J H, JUN H P, et al. Acute effects of open kinetic chain exercise versus those of closed kinetic chain exercise on quadriceps muscle thickness in healthy adults[J]. Int J Environ Res Public Health, 2020, 17(13): 4669. |
[21] |
ROSENBERG J G, RYAN E D, SOBOLEWSKI E J, et al. Reliability of panoramic ultrasound imaging to simultaneously examine muscle size and quality of the medial gastrocnemius[J]. Muscle Nerve, 2014, 49(5): 736-740.
doi: 10.1002/mus.24061 pmid: 24038069 |
[22] | ANSARI N N, RAHIMI M, NAGHDI S, et al. Inter- and intra-rater reliability of the modified modified ashworth scale in the assessment of muscle spasticity in cerebral palsy: a preliminary study[J]. Pediatr Rehabil Med, 2022, 15(1): 151-158. |
[23] |
何艳, 张琦, 胡晓诗, 等. 功能性电刺激康复踏车训练对痉挛型脑性瘫痪儿童下肢运动功能的效果[J]. 中国康复理论与实践, 2021, 27(12): 1464-1469.
doi: 10.3969/j.issn.1006-9771.2021.12.013 |
HE Y, ZHANG Q, HU X S, et al. Effect of functional electrical stimulation rehabilitation treadmill training on lower limb motor function in children with spastic cerebral palsy[J]. Chin J Rehabil Theory Pract, 2021, 27(12): 1464-1469. | |
[24] | RAUF W, SARMAD S, Khan I, et al. Effect of position on gross motor function and spasticity in spastic cerebral palsy children[J]. Pak Med Assoc, 2021, 71(3): 801-805. |
[25] | 张建奎, 马丙祥, 都修波, 等. 痉挛型脑性瘫痪儿童骨骼肌结构和功能改变的研究进展[J]. 中国康复医学杂志, 2023, 38(4): 566-571. |
ZHANG J K, MA B X, DU X B, et al. Research progress of skeletal muscle structure and function changes in children with spastic cerebral palsy[J]. Chin J Rehabil Med, 2023, 38(4): 566-571. | |
[26] | BELL M, AL MASRURI G, FERNANDEZ J, et al. Typical m. triceps surae morphology and architecture measurement from 0 to 18 years: a narrative review[J]. Anat, 2022, 240(4): 746-760. |
[27] | VANMECHELEN I M, SHORTLAND A P, NOBLE J J. Lower limb muscle volume estimation from maximum crosssectional area and muscle length in cerebral palsy and typically developing individuals[J]. Clin Biomech, 2018, 51: 40-44. |
[28] | BANDHOLM T, MAGNUSSON P, JENSEN B R, et al. Dor‐ siflexor muscle-group thickness in children with cerebral palsy: relation to cross-sectional area[J]. NeuroRehabilitation, 2009, 24(4): 299-306. |
[29] | HANDFIELD G G, WILLIAMS S, KHUU S, et al. Muscle architecture, growth, and biological Remodelling in cerebral palsy: a narrative review[J]. BMC Musculoskelet Disord, 2022, 23(1): 233. |
[30] | 彭艳华, 王明梅, 张广宇, 等. 超声成像下痉挛型脑性瘫痪患儿小腿三头肌肌肉形态和结构的变化[J]. 郑州大学学报(医学版), 2024, 59(3): 307-312. |
PENG Y H, WANG M M, ZHANG G Y, et al. Changes of muscle morphology and structure of triceps calf in children with spastic cerebral palsy under ultrasound imaging[J]. J Zhengzhou Univ (Med Sci Ed), 2024, 59(3): 307-312. | |
[31] |
WHITNEY D G, SINGH H, MILLER F, et al. Cortical bone deficit and fat infiltration of bone marrow and skeletal muscle in ambulatory children with mild spastic cerebral palsy[J]. Bone, 2017, 94: 90-97.
doi: S8756-3282(16)30296-4 pmid: 27732905 |
[32] | 祝莉洁. 超声成像量化评估体外冲击波治疗脑瘫患儿腓肠肌痉挛的研究[D]. 沈阳: 中国医科大学, 2022. |
ZHU L J. Quantitative evaluation of extracorporeal shock wave therapy for gastrocnemius spasm in children with cerebral palsy by ultrasound imaging[D]. Shenyang: China Medical University, 2022. | |
[33] |
DE OLIVEIRA S N, ZAPELLO G M B, KNIHS D A, et al. Muscle architecture and maximal strength between male practitioners of functional fitness training and strength training[J]. Int J Exerc Sci, 2023, 16(7): 1142-1153.
pmid: 38287937 |
[34] | 张志杰, 王季, 洪文侠, 等. 深层肌肉刺激对小腿三头肌张力影响的短期效果[J]. 中国康复医学杂志, 2016, 31(11): 1253-1254. |
ZHANG Z J, WANG J, HONG W X, et al. Short-term effect of deep muscle stimulation on triceps tone of lower leg[J]. Chin J Rehabil Med, 2016, 31(11): 1253-1254. | |
[35] |
TAKEUCHI K, TAKEBAYASHI T, HANIOKA D, et al. Comparison of tendon and muscle belly vibratory stimulation in the treatment of post-stroke upper extremity spasticity: a retrospective observational pilot study[J]. Sci Rep, 2024, 14(1): 4151.
doi: 10.1038/s41598-024-54815-1 pmid: 38378862 |
[36] | SEIM C, CHEN B, HAN C, et al. Relief of post-stroke spasticity with acute vibrotactile stimulation: controlled crossover study of muscle and skin stimulus methods[J]. Front Hum Neurosci, 2023, 17: 1206027. |
[37] | NEUNAN D A. 骨骼肌肉功能解剖学[M]. 刘颖,师玉涛,闫琪,译. 北京: 人民军医出版社, 2014. |
NEUNAN D A. Functional anatomy of skeletal muscle[M]. LIUY, SHIY T, YAN Q, trans trans. Beijing: People's Military Medical Publishing House, 2014. | |
[38] |
ZENG D, LEI W, KONG Y, et al. Effects of vibration therapy for post-stroke spasticity: a systematic review and meta-analysis of randomized controlled trials[J]. Biomed Eng Online, 2023, 22(1): 121.
doi: 10.1186/s12938-023-01176-x pmid: 38087275 |
[39] |
ADAIKINA A, DERRAIK J G B, HOFMAN P L, et al. Vibration therapy in young children with mild to moderate cerebral palsy: does frequency and treatment duration matter? A randomised-controlled study[J]. BMC Pediatr, 2023, 23(1): 4.
doi: 10.1186/s12887-022-03786-1 pmid: 36593455 |
[40] | 张其明, 鲍赛荣, 单莎瑞, 等. 电动深层肌肉刺激慢性非特异性腰痛患者竖脊肌的张力及硬度变化的数字化肌肉检测[J]. 中国组织工程研究, 2023, 27(8): 1250-1256. |
ZHANG Q M, BAO S R, SHAN S R, et al. Digital muscle detection of tension and stiffness of erector spine muscle in patients with chronic non-specific low back pain by electric deep muscle stimulation[J]. J Tissue Eng, 2023, 27(8): 1250-1256. | |
[41] | 鲍赛荣, 林利华, 单莎瑞, 等. 电动深层肌肉刺激对脑卒中患者肱二头肌张力、弹性及硬度的影响[J]. 中国组织工程研究, 2021, 25(20): 3138-3143. |
BAO S R, LIN L H, SHAN S R, et al. Effect of electric deep muscle stimulation on biceps tone, elasticity and hardness in patients with stroke[J]. J Tissue Eng, 2021, 25(20): 3138-3143. | |
[42] | 张其明, 廖迪, 钟志亮, 等. 深层肌肉刺激与肌电生物反馈干预脑卒中后患者小腿三头肌痉挛和步态的改变[J]. 中国组织工程研究, 2024, 29(2): 385-392. |
ZHANG Q M, LIAO D, ZHONG Z L, et al. Intervention of deep muscle stimulation and myoelectric biofeedback on triceps spasm and gait changes in patients with stroke[J]. J Tissue Eng, 2024, 29(2): 385-392. | |
[43] | AVVANTAGGIATO C, CASALE R. Localized muscle vibration in the treatment of motor impairment and spasticity in post-stroke patients: a systematic review[J]. Eur J Phys Rehabil Med, 2021, 57(1): 44-60. |
[44] | ZHANG Q, ZHENG S, LI S, et al. Efficacy and safety of whole-body vibration therapy for post-stroke spasticity: a systematic review and meta-analysis[J]. Front Neurol, 2023, 14: 1074922. |
[1] | 王红志, 杨剑. 虚拟现实技术在脑性瘫痪儿童青少年身体活动和健康中的应用:系统综述的系统综述[J]. 《中国康复理论与实践》, 2024, 30(5): 505-512. |
[2] | 崔甜甜, 杨钰琳, 崔腾腾, 马丽虹. 不同强化训练对脑性瘫痪儿童上肢运动功能效果的网状Meta分析[J]. 《中国康复理论与实践》, 2024, 30(4): 437-448. |
[3] | 吴亮, 许秀, 罗亮. 运动康复和适应性身体活动对痉挛性脑性瘫痪儿童青少年心理运动功能、运动功能和动作发展的效益:基于ICF的循证研究[J]. 《中国康复理论与实践》, 2024, 30(2): 148-156. |
[4] | 喜悦, 杨剑. 不同身体活动对脑性瘫痪儿童青少年健康效益的系统综述[J]. 《中国康复理论与实践》, 2024, 30(2): 157-167. |
[5] | 高明明, 恽晓萍, 赵舒羽, 辛然, 宋桂芸, 赵阳. 踝关节智能牵伸对脊髓损伤患者下肢痉挛效果的随机对照试验[J]. 《中国康复理论与实践》, 2024, 30(10): 1187-1192. |
[6] | 胡晓诗, 张琦, 岳青, 梁艳华, 李晓松, 冯啊美, 张燕庆. 矫形弹力绷带对痉挛性偏瘫脑性瘫痪患儿步态对称性和步行能力的效果[J]. 《中国康复理论与实践》, 2023, 29(9): 1083-1089. |
[7] | 蓝诗玲, 庞伟, 李鑫, 刘梦云, 战玉军. 动作观察疗法对脑性瘫痪患儿上肢功能作用的系统综述[J]. 《中国康复理论与实践》, 2023, 29(5): 558-564. |
[8] | 王勇丽, 余新春, 金昕玥, 毕思雨, 王曦, 倪天皓, 万勤, 黄昭鸣. 言语表象疗法改善脑瘫患儿构音障碍的效果[J]. 《中国康复理论与实践》, 2023, 29(5): 601-607. |
[9] | 于丽丽, 黄秋晨, 崔志刚, 李德盛, 胡春英, 叶淼, 刘克敏. 中老年女性早期膝骨关节炎的肌肉结构参数特征分析[J]. 《中国康复理论与实践》, 2023, 29(3): 356-363. |
[10] | 马红颖, 刘建军, 何学金, 王宇翔. 节律性听觉刺激对脑性瘫痪患者步态改善的系统综述[J]. 《中国康复理论与实践》, 2023, 29(12): 1386-1394. |
[11] | 王筠婷, 宋贝贝, 赵迪, 柏开祥. 脑性瘫痪儿童青少年全身振动干预的健康和功能结局:基于WHO-FICs的系统综述[J]. 《中国康复理论与实践》, 2023, 29(1): 55-63. |
[12] | 顾秋燕, 倪钰飞, 葛晓云, 王飞英, 陆梅娟, 徐小晶. 气动式手康复设备对痉挛型偏瘫脑性瘫痪儿童手功能的效果[J]. 《中国康复理论与实践》, 2023, 29(1): 93-97. |
[13] | 祝莉洁,贠国俊,张伟云,刘青,曹建国. 超声成像技术在痉挛型脑性瘫痪患儿腓肠肌定量评定中的应用[J]. 《中国康复理论与实践》, 2022, 28(9): 1079-1083. |
[14] | 刘鹏,苏春,邵磊,贾梦怡,王海侠,田斯辕,耿开晴,张亚男. 基于中文版上肢技巧质量测试的改良强制性运动疗法对偏瘫型脑性瘫痪儿童上肢功能的效果[J]. 《中国康复理论与实践》, 2022, 28(8): 897-902. |
[15] | 葛胜男,王勇丽,尹敏敏,万勤,杨亚茹,黄昭鸣. 脑性瘫痪并发言语障碍的诊断、评估与康复:基于WHO-FICs研究[J]. 《中国康复理论与实践》, 2022, 28(6): 637-645. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|