[1] |
World Health Organization. Diabetes[EB/OL]. (2022-09-16) [2022-11-13]. https://www.who.int/zh/news-room/fact-sheets/detail/diabetes.
|
[2] |
International Diabetes Federation. IDF diabetes atlas[M]. Brussels: International Diabetes Federation, 2021.
|
[3] |
LI Y, TENG D, SHI X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study[J]. BMJ, 2020, 28(369): m997.
|
[4] |
ELSAYED N A, ALEPPO G, ARODA V R, et al. Addendum. 2. Classification and diagnosis of diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46(Suppl. 1): S19-S40[J]. Diabetes Care, 2023, 46(9): 1715.
|
[5] |
COLBERG S R, SIGAL R J, YARDLEY J E, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association[J]. Diabetes Care, 2016, 39(11): 2065-2079.
pmid: 27926890
|
[6] |
RICHTER E, HARGREAVES M. Exercise, GLUT4, and skeletal muscle glucose uptake[J]. Physiol Rev, 2013, 93(3): 993-1017.
doi: 10.1152/physrev.00038.2012
pmid: 23899560
|
[7] |
WAKE A D. Antidiabetic effects of physical activity: how it helps to control type 2 diabetes[J]. Diabetes Metab Syndr Obes, 2020, 19(13): 2909-2923.
|
[8] |
VISSEREN F L J, MACH F, SMULDERS Y M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice[J]. Eur Heart J, 2021, 42(34): 3227-3337.
doi: 10.1093/eurheartj/ehab484
pmid: 34458905
|
[9] |
BULL F C, AL-ANSARI S S, BIDDLE S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour[J]. Br J Sports Med, 2020, 54(24): 1451-1462.
|
[10] |
PAGE M J, MCKENZIE J E, BOSSUYT P M, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021, 29(372): n71.
|
[11] |
SHEA B J, REEVES B C, WELLS G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both[J]. BMJ, 2017, 21(358): j4008.
|
[12] |
MAUDET-COULOMB É, MARTIN-KRUMM C, TARQUINIO C, et al. Adapted physical activity interventions and motivational levers: what benefits for type 2 diabetics? A systematic review[J]. Health Sci Rep, 2024, 7(3): e1644.
|
[13] |
GALLARDO-GÓMEZ D, SALAZAR-MARTÍNEZ E, ALFONSO-ROSA R M, et al. Optimal dose and type of physical activity to improve glycemic control in people diagnosed with type 2 diabetes: a systematic review and meta-analysis[J]. Diabetes Care, 2024, 47(2): 295-303.
|
[14] |
GRACE A, CHAN E, GIALLAURIA F, et al. Clinical outcomes and glycaemic responses to different aerobic exercise training intensities in type II diabetes: a systematic review and meta-analysis[J]. Cardiovasc Diabetol, 2017, 16(1): 37.
doi: 10.1186/s12933-017-0518-6
pmid: 28292300
|
[15] |
DE MELLO M B, RIGHI N C, SCHUCH F B, et al. Effect of high-intensity interval training protocols on VO(2)max and HbA1c level in people with type 2 diabetes: a systematic review and meta-analysis[J]. Ann Phys Rehabil Med, 2022, 65(5): 101586.
|
[16] |
IGARASHI Y, AKAZAWA N, MAEDA S. The relationship between the level of exercise and hemoglobin A(1)c in patients with type 2 diabetes mellitus: a systematic review and meta-analysis[J]. Endocrine, 2021, 74(3): 546-558.
|
[17] |
JANSSON A K, CHAN L X, LUBANS D R, et al. Effect of resistance training on HbA1c in adults with type 2 diabetes mellitus and the moderating effect of changes in muscular strength: a systematic review and meta-analysis[J]. BMJ Open Diabetes Res Care, 2022, 10(2): e002595.
|
[18] |
王梅, 廖婷, 陈建. 社区环境下2型糖尿病三种运动相关干预模式健康效益的系统综述[J]. 中国康复理论与实践, 2022, 28(11): 1288-1298.
doi: 10.3969/j.issn.1006-9771.2022.11.008
|
|
WANG M, LIAO T, CHEN J. Health benefit of three exercise-related interventions for type 2 diabetes mellitus in community: a systematic review[J]. Chin J Rehabil Theory Pract, 2022, 28(11): 1288-1298.
|
[19] |
PAN B, GE L, XUN Y Q, et al. Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis[J]. Int J Behav Nutr Phys Act, 2018, 15(1): 72.
doi: 10.1186/s12966-018-0703-3
pmid: 30045740
|
[20] |
WRENCH E, RATTLEY K, LAMBERT J E, et al. There is no dose-response relationship between the amount of exercise and improvement in HbA1c in interventions over 12 weeks in patients with type 2 diabetes: a meta-analysis and meta-regression[J]. Acta Diabetol, 2022, 59(11): 1399-1415.
|
[21] |
EDWARDS J, HOSSEINZADEH H. The impact of structured physical activity on glycaemic control in dia betes prevention programmes: a systematic review[J]. Proc Singapore Healthcare, 2017, 27(3): 193-204.
|
[22] |
American College of Sports Medicine. ACSM's guidelines for exercise testing and prescription[M]. 11th ed. Philadelphia: Wolters Kluwer, 2021.
|
[23] |
World Health Organization. WHO guidelines on physical activity and sedentary behaviour[M]. Geneva: World Health Organization, 2020.
|
[24] |
World Health Organization. WHO package of essential noncommunicable (PEN) disease interventions for primary health care[M]. Geneva: World Health Organization, 2020.
|
[25] |
WORMGOOR S G, DALLECK L C, ZINN C, et al. High-intensity interval training is equivalent to moderate-intensity continuous training for short- and medium-term outcomes of glucose control, cardiometabolic risk, and microvascular complication markers in men with type 2 diabetes[J]. Front Endocrinol (Lausanne), 2018, 28(9): 475.
|
[26] |
CASSIDY S, THOMA C, HOUGHTON D, et al. High-intensity interval training: a review of its impact on glucose control and cardiometabolic health[J]. Diabetologia, 2017, 60(1): 7-23.
pmid: 27681241
|