《中国康复理论与实践》 ›› 2025, Vol. 31 ›› Issue (9): 1083-1091.doi: 10.3969/j.issn.1006-9771.2025.09.012
汪娟1,2, 张庆3, 周长林1,2, 陈长运1,2, 戴峰1,2, 孙像鸿1,2, 邹婷1,2, 王健1,2, 高骏凯1,2, 徐卫东3(
)
收稿日期:2025-06-09
修回日期:2025-09-07
出版日期:2025-09-25
发布日期:2025-10-10
通讯作者:
徐卫东,男,博士,教授,主任医师,主要研究方向:骨外科学、运动医学,E-mail: 作者简介:汪娟(1994-),女,汉族,安徽安庆市人,硕士研究生,主管治疗师,主要研究方向:慢性疼痛、运动损伤康复。
基金资助:
WANG Juan1,2, ZHANG Qing3, ZHOU Changlin1,2, CHEN Changyun1,2, DAI Feng1,2, SUN Xianghong1,2, ZOU Ting1,2, WANG Jian1,2, GAO Junkai1,2, XU Weidong3(
)
Received:2025-06-09
Revised:2025-09-07
Published:2025-09-25
Online:2025-10-10
Contact:
XU Weidong, E-mail: Supported by:摘要:
目的 对比不同强度神经肌肉功能训练(NMT)对前交叉韧带重建术(ACLR)后患者肌力和功能的影响。
方法 2023年1月至2024年1月,选择长海医院ACLR患者60例,均于术后1~8周接受统一强度的NMT,术后8周,随机分为低强度组(n = 30)和高强度组(n = 30)。术后9~16周分别接受不同强度的NMT,单次训练1 h,每周3次,共计48次。分别在术后8周和16周,比较Lysholm评分,患侧膝关节屈肌、伸肌肌力和肌肉耐力。
结果 分组训练后,两组Lysholm评分均显著增加(|t| > 13.739, P < 0.001),且高强度组高于低强度组(t = -2.574, P < 0.05);高强度组在60°/s、120°/s和180°/s的角速度下伸肌和屈肌相对峰力矩、肌耐力均改善(|t| > 2.320, P < 0.05),低强度组屈肌相对峰力矩在3种角速度下均改善(t > 2.177, P < 0.05),伸肌相对峰力矩在60°/s和180°/s的角速度下均改善(|t| > 1.715, P < 0.05),伸肌耐力在60°/s角速度下改善(t = -2.293, P < 0.05);但两组间比较,伸肌和屈肌相对峰力矩、肌耐力在60°/s、120°/s和180°/s的角速度下均无显著性差异(P > 0.05)。
结论 高、低强度NMT均可以改善ACLR患者肌力、肌耐力和膝关节功能,高强度NMT可能优于低强度,还需进一步验证。
中图分类号:
汪娟, 张庆, 周长林, 陈长运, 戴峰, 孙像鸿, 邹婷, 王健, 高骏凯, 徐卫东. 不同强度神经肌肉功能训练对前交叉韧带重建术后患者肌力和膝关节功能的影响[J]. 《中国康复理论与实践》, 2025, 31(9): 1083-1091.
WANG Juan, ZHANG Qing, ZHOU Changlin, CHEN Changyun, DAI Feng, SUN Xianghong, ZOU Ting, WANG Jian, GAO Junkai, XU Weidong. Effect of different intensity neuromuscular training on muscle strength and knee joint function of patients after anterior cruciate ligament reconstruction[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(9): 1083-1091.
表3
两组分组训练前后在60°/s角速度下的肌力比较"
| 变量 | 组别 | n | 测试 | t值 | P值 | |
|---|---|---|---|---|---|---|
| 伸肌相对峰力矩/(N⋅m⋅kg-1) | 低强度组 | 30 | 前测 | 0.74±0.35 | -3.408 | 0.002 |
| 后测 | 0.90±0.29 | |||||
| 高强度组 | 30 | 前测 | 0.79±0.28 | -3.814 | 0.001 | |
| 后测 | 1.00±0.23 | |||||
| 分组训练前两组均值差 | 0.05±0.46 | -0.613 | 0.543 | |||
| 分组训练后两组均值差 | 0.10±0.41 | -1.532 | 0.131 | |||
| 屈肌相对峰力矩/(N⋅m⋅kg-1) | 低强度组 | 30 | 前测 | -0.56±0.22 | -2.194 | 0.036 |
| 后测 | -0.66±0.31 | |||||
| 高强度组 | 30 | 前测 | -0.50±0.16 | 4.379 | < 0.001 | |
| 后测 | -0.57±0.14 | |||||
| 分组训练前两组均值差 | 0.06±0.29 | -1.184 | 0.242 | |||
| 分组训练后两组均值差 | 0.09±0.38 | -1.443 | 0.157 | |||
| 伸肌耐力 | 低强度组 | 30 | 前测 | 0.89±0.28 | -2.293 | 0.029 |
| 后测 | 0.93±0.23 | |||||
| 高强度组 | 30 | 前测 | 0.94±0.22 | -3.075 | 0.005 | |
| 后测 | 0.98±0.24 | |||||
| 分组训练前两组均值差 | 0.05±0.33 | -0.776 | 0.441 | |||
| 分组训练后两组均值差 | 0.05±0.29 | -0.860 | 0.393 | |||
| 屈肌耐力 | 低强度组 | 30 | 前测 | 0.96±0.27 | -1.952 | 0.061 |
| 后测 | 0.99±0.27 | |||||
| 高强度组 | 30 | 前测 | 1.03±0.12 | -3.197 | 0.003 | |
| 后测 | 1.07±0.13 | |||||
| 分组训练前两组均值差 | 0.07±0.33 | -1.203 | 0.236 | |||
| 分组训练后两组均值差 | 0.08±0.33 | -1.402 | 0.168 |
表4
两组分组训练前后在120°/s角速度下的肌力比较"
| 变量 | 组别 | n | 测试 | t值 | P值 | |
|---|---|---|---|---|---|---|
| 伸肌相对峰力矩/(N⋅m⋅kg-1) | 低强度组 | 30 | 前测 | 0.66±0.35 | -1.715 | 0.097 |
| 后测 | 0.78±0.31 | |||||
| 高强度组 | 30 | 前测 | 0.61±0.27 | -3.398 | 0.002 | |
| 后测 | 0.77±0.16 | |||||
| 分组训练前两组均值差 | -0.05±0.43 | 0.609 | 0.545 | |||
| 分组训练后两组均值差 | -0.01±0.37 | 0.130 | 0.897 | |||
| 屈肌相对峰力矩/(N⋅m⋅kg-1) | 低强度组 | 30 | 前测 | -0.50±0.22 | 3.030 | 0.005 |
| 后测 | -0.60±0.24 | |||||
| 高强度组 | 30 | 前测 | -0.49±0.22 | 4.100 | < 0.001 | |
| 后测 | -0.55±0.24 | |||||
| 分组训练前两组均值差 | 0.02±0.28 | -0.287 | 0.775 | |||
| 分组训练后两组均值差 | 0.05±0.31 | -0.722 | 0.473 | |||
| 伸肌耐力 | 低强度组 | 30 | 前测 | 0.99±0.14 | -0.530 | 0.600 |
| 后测 | 1.01±0.27 | |||||
| 高强度组 | 30 | 前测 | 1.03±0.27 | -3.420 | 0.002 | |
| 后测 | 1.07±0.23 | |||||
| 分组训练前两组均值差 | 0.04±0.27 | -0.736 | 0.465 | |||
| 分组训练后两组均值差 | 0.06±0.29 | -0.896 | 0.374 | |||
| 屈肌耐力 | 低强度组 | 30 | 前测 | 1.02±0.17 | -1.518 | 0.140 |
| 后测 | 1.06±0.25 | |||||
| 高强度组 | 30 | 前测 | 1.07±0.20 | -3.797 | 0.001 | |
| 后测 | 1.13±0.26 | |||||
| 分组训练前两组均值差 | 0.05±0.27 | -1.110 | 0.272 | |||
| 分组训练后两组均值差 | 0.06±0.38 | -0.968 | 0.337 |
表5
两组分组训练前后在180°/s角速度下的肌力比较"
| 变量 | 组别 | n | 测试 | t值 | P值 | |
|---|---|---|---|---|---|---|
| 伸肌相对峰力矩/(Nm⋅kg-1) | 低强度组 | 30 | 前测 | 0.73±0.32 | -2.541 | 0.017 |
| 后测 | 0.81±0.30 | |||||
| 高强度组 | 30 | 前测 | 0.63±0.23 | -2.503 | 0.018 | |
| 后测 | 0.75±0.36 | |||||
| 分组训练前两组均值差 | -0.10±0.33 | 1.366 | 0.178 | |||
| 分组训练后两组均值差 | -0.07±0.49 | 0.762 | 0.449 | |||
| 屈肌相对峰力矩/(Nm⋅kg-1) | 低强度组 | 30 | 前测 | -0.44±0.22 | 2.177 | 0.038 |
| 后测 | -0.52±0.26 | |||||
| 高强度组 | 30 | 前测 | -0.43±0.23 | 5.863 | < 0.001 | |
| 后测 | -0.49±0.25 | |||||
| 分组训练前两组均值差 | 0.01±0.29 | -0.192 | 0.848 | |||
| 分组训练后两组均值差 | 0.03±0.32 | -0.531 | 0.597 | |||
| 伸肌耐力 | 低强度组 | 30 | 前测 | 0.86±0.24 | -0.714 | 0.481 |
| 后测 | 0.87±0.24 | |||||
| 高强度组 | 30 | 前测 | 0.89±0.18 | -2.320 | 0.028 | |
| 后测 | 0.91±0.21 | |||||
| 分组训练前两组均值差 | 0.03±0.30 | -0.585 | 0.561 | |||
| 分组训练后两组均值差 | 0.04±0.33 | -0.724 | 0.472 | |||
| 屈肌耐力 | 低强度组 | 30 | 前测 | 0.88±0.24 | -1.485 | 0.148 |
| 后测 | 0.91±0.20 | |||||
| 高强度组 | 30 | 前测 | 0.92±0.15 | -3.288 | 0.003 | |
| 后测 | 0.96±0.16 | |||||
| 分组训练前两组均值差 | 0.04±0.28 | -0.839 | 0.405 | |||
| 分组训练后两组均值差 | 0.05±0.23 | -1.146 | 0.257 |
| [1] |
CHIA L, DE OLIVEIRA SILVA D, WHALAN M, et al. Non-contact anterior cruciate ligament injury epidemiology in team-ball sports: a systematic review with meta-analysis by sex, age, sport, participation level, and exposure type[J]. Sports Med, 2022, 52(10): 2447-2467.
doi: 10.1007/s40279-022-01697-w pmid: 35622227 |
| [2] |
BODEN B P, SHEEHAN F T. Mechanism of non-contact ACL injury: OREF Clinical Research Award 2021[J]. J Orthop Res, 2021, 40(3): 531-540.
doi: 10.1002/jor.25257 pmid: 34951064 |
| [3] |
WANG D, FAN H, HU L, et al. Increased knee torsional misalignment associated with femoral torsion is related to non-contact anterior cruciate ligament injury: a case-control study[J]. J Orthop Surg Res, 2024, 19(1): 124.
doi: 10.1186/s13018-024-04609-y pmid: 38321464 |
| [4] | PERERA J, MILLER M D, DANAhy P. Case report demonstrating multifactorial risks of anterior cruciate ligament re-tear injuries and appropriate response among those with high chance of recurrence[J]. Cureus, 2022, 14(5): e24965. |
| [5] | PORTER M, SHADBOLT B. Modified iliotibial band tenodesis versus lateral extracapsular tenodesis, to augment anterior cruciate ligament reconstruction: a 2-year randomized controlled trial[J]. ANZ J Surg, 2022, 92(9): 2247-2253. |
| [6] | BARTH T, BOND C W, MACFADDEN L N, et al. Effect of time and sex on post-anterior cruciate ligament reconstruction psychological patient-reported outcome measure scores[J]. J Athl Train, 2023, 59(9): 898-905. |
| [7] | WANG Y J, ZHANG J C, ZHANG Y Z, et al. Assessment of functional prognosis of anterior cruciate ligament reconstruction in athletes based on a body shape index[J]. World J Clin Cases, 2023, 11(19): 4567-4578. |
| [8] | RUAN D, ZHU T, HUANG J, et al. Knitted silk-collagen scaffold incorporated with ligament stem/progenitor cells sheet for anterior cruciate ligament reconstruction and osteoarthritis prevention[J]. ACS Biomater Sci Eng, 2019, 5(10): 5412-5421. |
| [9] |
LIM S, PARK K H, PARK D Y, et al. Rotational stability can be enhanced in revision anterior cruciate ligament reconstruction using the over-the-top augmentation technique compared to single bundle technique[J]. BMC Sports Sci Med Rehabil, 2023, 15(1): 111.
doi: 10.1186/s13102-023-00724-1 pmid: 37715268 |
| [10] | KHALED W, GEROMETTA A, GUERINI H, et al. Complete and partial tears of the anterior cruciate ligament: acute and evolution[J]. Semin Musculoskelet Radiol, 2025, 29(3): 390-402. |
| [11] | LARWA J, STOY C, CHAFETZ R S, et al. Stiff landings, core stability, and dynamic knee valgus: a systematic review on documented anterior cruciate ligament ruptures in male and female athletes[J]. Int J Environ Res Public Health, 2021, 18(7): 3826. |
| [12] | PETERSON C, LI T, NORCROSS M. Return on investment of anterior cruciate ligament injury prevention programs in the United States[J]. [ahead of print]. J Athl Train, 2025. doi: 10.4085/1062-6050-0507.24. |
| [13] | ROSS A G, AGRESTA B, MCKAY M, et al. Financial burden of anterior cruciate ligament reconstructions in football (soccer) players: an Australian cost of injury study[J]. Inj Prev, 2023, 29(6): 474-481. |
| [14] |
XU A L, MUN F, GUPTA A, et al. Financial burden of pediatric anterior cruciate ligament reconstruction[J]. J Pediatr Orthop, 2022, 42(9): e943-e948.
doi: 10.1097/BPO.0000000000002230 pmid: 35941092 |
| [15] | 施政良, 李彦林, 余洋, 等. 前交叉韧带重建术后重返运动评估方法研究进展[J]. 中国修复重建外科杂志, 2023, 37(4): 495-501. |
| SHI Z L, LI Y L, YU Y, et al. Progress in evaluation of return to sports after anterior cruciate ligament reconstruction[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2023, 37(4): 495-501. | |
| [16] |
ZHOU T, XU Y, ZHANG A, et al. Global research status of anterior cruciate ligament reconstruction: a bibliometric analysis[J]. EFORT Open Rev, 2022, 7(12): 808-816.
doi: 10.1530/EOR-21-0065 pmid: 36541554 |
| [17] | FROBELL R B, ROOS H P, ROOS E M, et al. Treatment for acute anterior cruciate ligament tear: five year outcome of randomised trial[J]. BMJ, 2013, 346: f232. |
| [18] | MANIAR N, VERHAGEN E, BRYANT A L, et al. Trends in Australian knee injury rates: an epidemiological analysis of 228,344 knee injuries over 20 years[J]. Lancet Reg Health West Pac, 2022, 21: 100409. |
| [19] |
BEARD D J, DAVIES L, COOK J A, et al. Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial[J]. Lancet, 2022, 400(10352): 605-615.
doi: 10.1016/S0140-6736(22)01424-6 pmid: 35988569 |
| [20] | KOMNOS G A, HANTES M H, KALIFIS G, et al. Anterior cruciate ligament tear: individualized indications for non-operative management[J]. J Clin Med, 2024, 13(20): 6233. |
| [21] | ARDERN C L, WEBSTER K E, TAYLOR N F, et al. Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery two-thirds of patients have not returned by 12 months after surgery[J]. Am J Sports Med, 2010, 39(3): 538-543. |
| [27] | TENGMAN E, SCHELIN L, HÄGER C K. Angle-specific torque profiles of concentric and eccentric thigh muscle strength 20 years after anterior cruciate ligament injury[J]. Sports Biomech, 2022, 23(12): 2691-2707. |
| [28] | 杜培洁, 芦劼明. 神经肌肉功能训练应用于预防非接触性前交叉韧带损伤的研究进展[J]. 体育科技文献通报, 2024, 32(5): 237-240. |
| [29] | COCHRANE J L, LLOYD D G, BESIER T F, et al. Training affects knee kinematics and kinetics in cutting maneuvers in sport[J]. Med Sci Sports Exerc, 2010, 42(8): 1535-1544. |
| [30] | WILDERMAN D R, ROSS S E, PADUA D A. Thigh muscle activity, knee motion, and impact force during side-step pivoting in agility-trained female basketball players[J]. J Athl Train, 2009, 44(1): 14-25. |
| [31] |
SMALL K, MC NAUGHTON L, MATTHEWS M. A systematic review into the efficacy of static stretching as part of a warm-up for the prevention of exercise-related injury[J]. Res Sports Med, 2008, 16(3): 213-231.
doi: 10.1080/15438620802310784 pmid: 18785063 |
| [32] |
SHAW T, WILLIAMS M T, CHIPCHASE L S. Do early quadriceps exercises affect the outcome of ACL reconstruction? A randomised controlled trial[J]. Aust J Physiother, 2005, 51(1): 9-17.
pmid: 15748120 |
| [33] |
CHRISTENSEN J, GOLDFINE L, WEST H. The effects of early aggressive rehabilitation on outcomes after anterior cruciate ligament reconstruction using autologous hamstring tendon: a randomized clinical trial[J]. J Sport Rehabil, 2013, 22(3): 191-201.
doi: 10.1123/jsr.22.3.191 pmid: 23579334 |
| [34] |
ITO Y, DEIE M, ADACHI N, et al. A prospective study of 3-day versus 2-week immobilization period after anterior cruciate ligament reconstruction[J]. Knee, 2007, 14(1): 34-38.
pmid: 17129731 |
| [35] | CHRZAN D, KUSZ D, BOŁTUĆ W, et al. Subjective assessment of rehabilitation protocol by patients after ACL reconstruction: preliminary report[J]. Ortop Traumatol Rehabil, 2013, 15(3): 215-225. |
| [36] |
UÇAR M, KOCA I, EROGLU M, et al. Evaluation of open and closed kinetic chain exercises in rehabilitation following anterior cruciate ligament reconstruction[J]. J Phys Ther Sci, 2014, 26(12): 1875-1878.
doi: 10.1589/jpts.26.1875 pmid: 25540486 |
| [22] |
GHADERI M, LETAFATKAR A, THOMAS A C, et al. Effects of a neuromuscular training program using external focus attention cues in male athletes with anterior cruciate ligament reconstruction: a randomized clinical trial[J]. BMC Sports Sci Med Rehabil, 2021, 13(1): 49.
doi: 10.1186/s13102-021-00275-3 pmid: 33964961 |
| [23] |
NAGELLI C, WORDEMAN S, DI STASI S, et al. Biomechanical deficits at the hip in athletes with ACL reconstruction are ameliorated with neuromuscular training[J]. Am J Sports Med, 2018, 46(11): 2772-2779.
doi: 10.1177/0363546518787505 pmid: 30074811 |
| [24] | NAGELLI C V, WORDEMAN S C, DI STASI S, et al. Neuromuscular training improves biomechanical deficits at the knee in anterior cruciate ligament-reconstructed athletes[J]. Clin J Sport Med, 2019, 31(2): 113-119. |
| [25] | KOTSIFAKI R, KORAKAKIS V, KING E, et al. Aspetar clinical practice guideline on rehabilitation after anterior cruciate ligament reconstruction[J]. Br J Sports Med, 2023, 57(9): 500-514. |
| [26] | KHALID K, ANWAR N, SAQULAIN G, et al. Neuromuscular training following anterior cruciate ligament reconstruction: pain, function, strength, power & quality of life perspective: a randomized control trial[J]. Pak J Med Sci, 2022, 38(8): 2175-2181. |
| [37] | NAGELLI C V, DI STASI S, WORDEMAN S C, et al. Knee biomechanical deficits during a single-leg landing task are addressed with neuromuscular training in anterior cruciate ligament-reconstructed athletes[J]. Clin J Sport Med, 2019, 31(6): e347-e353. |
| [38] |
ZULEGER T M, SLUTSKY-GANESH A B, KIM H, et al. Differential neural mechanisms for movement adaptations following neuromuscular training in young female athletes with a history of sports-related concussion[J]. Neuroscience, 2024, 558: 70-80.
doi: 10.1016/j.neuroscience.2024.08.014 pmid: 39154844 |
| [39] | ROMMERS N, RÖSSLER R, TASSIGNON B, et al. Most amateur football teams do not implement essential components of neuromuscular training to prevent anterior cruciate ligament injuries and lateral ankle sprains[J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(4): 1169-1179. |
| [40] | ZENG J, LIU Q, LEI Z, et al. Evaluation of integrated neuromuscular training on the recovery of joint injury: a protocol for systematic review and meta-analysis[J]. Medicine (Baltimore), 2022, 101(5): e28737. |
| [41] | ZHAO W, WANG C, BI Y, et al. Effect of integrative neuromuscular training for injury prevention and sports performance of female badminton players[J]. Biomed Res Int, 2021, 2021: 5555853. |
| [42] |
NESSLER T, DENNEY L, SAMPLEY J. ACL injury prevention: what does research tell us?[J]. Curr Rev Musculoskelet Med, 2017, 10(3): 281-288.
doi: 10.1007/s12178-017-9416-5 pmid: 28656531 |
| [43] | 鲁智勇, 普江艳, 解强, 等. 改良运动损伤预防方案在前交叉韧带损伤预防中的应用[J]. 中国康复医学杂志, 2021, 36(4): 10. |
| [44] | ZAKHARIA A, ZHANG K, AL-KATANANI F, et al. Prehabilitation prior to anterior cruciate ligament reconstruction is a safe and effective intervention for short- to long-term benefits: a systematic review[J]. [ahead of print]. Knee Surg Sports Traumatol Arthrosc, 2025. doi: 10.1002/ksa.12631. |
| [45] |
CÓRDOBA L L, RODRIGUES M C, CORRÊA DE FREITAS R, et al. Physiotherapeutic approach to the preoperative period for the anterior cruciate ligament reconstruction: a systematic review[J]. J Bodyw Mov Ther, 2023, 33: 88-94.
doi: 10.1016/j.jbmt.2022.09.001 pmid: 36775532 |
| [46] | SUGIMOTO D, MYER G, BUSH H, et al. Compliance with neuromuscular training and anterior cruciate ligament injury risk reduction in female athletes: a meta-analysis[J]. J Athl Train, 2012, 47(6): 714-723. |
| [1] | 王潇婧, 魏婧怡, 卫晨, 王冉, 马赛, 刘西花. 针刺同步构音训练对脑卒中后痉挛型构音障碍的效果[J]. 《中国康复理论与实践》, 2025, 31(9): 1009-1016. |
| [2] | 骆丹丹, 沈敏, 王素娟, 邱翁歆, 张宇轩, 吴蕴, 王圣虓. 汉语发展性阅读障碍儿童全脑静息态功能连接的特征分析[J]. 《中国康复理论与实践》, 2025, 31(9): 1023-1031. |
| [3] | 高云汉, 侯闪闪, 汪鑫煜, 朱崇田. 基于功能性近红外光谱探讨脑机接口对脑卒中患者上肢运动功能障碍的效果[J]. 《中国康复理论与实践》, 2025, 31(9): 1066-1073. |
| [4] | 娄彦涛, 王家伟, 肖晓飞, 李艳辉. 不同温度冷疗对青年男性运动后延迟性上肢肌肉酸痛的效果比较[J]. 《中国康复理论与实践》, 2025, 31(9): 1074-1082. |
| [5] | 王晓锋, 胡梦巧, 汪嫣, 魏坤, 徐文竹, 任丹, 马晔. 外骨骼机器人辅助步态训练对脑卒中和脊髓损伤下肢功能康复效果的系统综述[J]. 《中国康复理论与实践》, 2025, 31(8): 914-921. |
| [6] | 梁斐, 陈西梅, 戚静, 王淑荣, 梁永胜. 残疾大学生功能、职业胜任力与职业发展:基于ICF和RCF[J]. 《中国康复理论与实践》, 2025, 31(8): 922-929. |
| [7] | 李莎, 邱卓英. 智力与发展性残疾儿童言语和语言功能特点及教育课程和康复方案:基于ICF的研究[J]. 《中国康复理论与实践》, 2025, 31(8): 930-938. |
| [8] | 任良湘, 梅培培, 毛二莉, 汤一帆, 王雪, 叶义清. 脊髓损伤神经源性肠道功能障碍患者主要照顾者全程参与肠道管理需求的质性研究[J]. 《中国康复理论与实践》, 2025, 31(8): 965-971. |
| [9] | 杨亚茹, 邱卓英, 陈迪, 王忠彦, 张萌, 宋桂芸. 运用ICF构建残疾标准的理论架构与方法体系[J]. 《中国康复理论与实践》, 2025, 31(7): 745-754. |
| [10] | 吕雪丽, 杨亚茹, 邱卓英, 王忠彦, 田益凡, 刘叶, 李晨, 陈迪. 基于ICF和ICD-11的中国6种视力残疾相关标准比较研究[J]. 《中国康复理论与实践》, 2025, 31(7): 755-762. |
| [11] | 秦晴, 杨亚茹, 邱卓英, 陈迪, 刘叶, 田益凡, 王忠彦. 基于ICF和ICD-11的中国6种听力残疾相关标准比较研究[J]. 《中国康复理论与实践》, 2025, 31(7): 763-771. |
| [12] | 叶海燕, 杨亚茹, 邱卓英, 王忠彦, 陈迪, 宋桂芸, 王方永, 田益凡, 刘叶. 基于ICF和ICD-11的中国5种肢体残疾相关标准比较研究[J]. 《中国康复理论与实践》, 2025, 31(7): 772-780. |
| [13] | 李莎. 基于ICF构建特殊需求学生适宜发展评价指标体系[J]. 《中国康复理论与实践》, 2025, 31(6): 628-634. |
| [14] | 朱晨晨, 廖思斯, 潘建明, 夏币华, 洪宁杰. 0~3岁发育障碍婴幼儿早期家庭教育与康复:基于ICF的目标设置与服务体系研究[J]. 《中国康复理论与实践》, 2025, 31(6): 635-641. |
| [15] | 邵雪云. 肥胖儿童身体活动与功能和心理-行为健康:政策架构与健康行为干预模式[J]. 《中国康复理论与实践》, 2025, 31(6): 642-649. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||