| [1] |
中国残疾人联合会. 2024年残疾人事业发展统计公报[EB/OL]. (2025-05-08) [2025-06-11]. https://www.cdpf.org.cn/zwgk/zccx/tjgb/1706f34657364af9a52b67f77d8c9f2b.htm.
|
| [2] |
ASIF M, TIWANA M I, KHAN U S, et al. Advancements, trends and future prospects of lower limb prosthesis[J]. IEEE Access, 2021, 9: 85956-85977.
|
| [3] |
魏艳琴, 曹学军, 杨平, 等. 下肢截肢者穿戴假肢行走能力的评价[J]. 中国康复理论与实践, 2016, 22(7): 855-859.
doi: 10.3969/j.issn.1006-9771.2016.07.028
|
|
WEI Y Q, CAO X J, YANG P, et al. Evaluation for walking ability of lower limb amputees with prostheses: a literature analysis[J]. Chin J Rehabil Theory Pract, 2016, 22(7): 855-859.
|
| [4] |
顾洪, 李伟达, 李娟. 智能膝关节假肢研究现状及发展趋势[J]. 中国康复理论与实践, 2016, 22(9): 1080-1085.
doi: 10.3969/j.issn.1006-9771.2016.09.021
|
|
GU H, LI W D, LI J. State-of-the-art and development of intelligent knee prosthesis (review)[J]. Chin J Rehabil Theory Pract, 2016, 22(9): 1080-1085.
|
| [5] |
张意彬, 吕杰, 喻洪流. 基于模糊逻辑算法的智能膝关节假肢步态相位识别[J]. 中国康复理论与实践, 2023, 29(8): 896-902.
doi: 10.3969/j.issn.1006-9771.2023.08.005
|
|
ZHANG Y B, LÜ J, YU H L. Gait phase recognition in intelligent above-knee prosthesis based on fuzzy logic algorithm[J]. Chin J Rehabil Theory Pract, 2023, 29(8): 896-902.
|
| [6] |
喻洪流. 康复机器人:未来十大远景展望[J]. 中国康复医学杂志, 2020, 35(8): 900-902.
|
| [7] |
刘作军, 许长寿, 陈玲玲, 等. 智能假肢膝关节的研发要点及其研究进展综述[J]. 包装工程, 2021, 42(10): 54-63.
|
|
LIU Z J, XU C S, CHEN L L, et al. Key point and progress of intelligent prosthesis knee joint research[J]. Packaging Eng, 2021, 42(10): 54-63.
|
| [8] |
王蕾, 王辉, 黄品高, 等. 下肢截肢者行走意图识别方法研究进展[J]. 自动化学报, 2018, 44(8): 1370-1380.
|
|
WANG L, WANG H, HUANG P G, et al. Progress and perspective of recognition methods for walking intention of lower-limb amputees[J]. Acta Automatica Sinica, 2018, 44(8): 1370-1380.
|
| [9] |
孙为双, 路知远, 公维军, 等. 表面肌电信号在脑卒中手功能康复机器人中的研究进展[J]. 中国康复医学杂志, 2025, 40(5): 790-794.
|
| [10] |
张尧. 智能动力膝关节假肢的人体运动意图识别技术研究[D]. 长春: 吉林大学, 2024.
|
|
ZHANG Y. Research on human locomotion intent recognition technology for intelligent powered knee prosthesis[D]. Changchun: Jilin University, 2024.
|
| [11] |
WANG E, CHEN X, LI Y, et al. Lower limb motion intent recognition based on sensor fusion and fuzzy multitask learning[J]. IEEE Trans Fuzzy Syst, 2024, 32(5): 2903-2914.
|
| [12] |
MA X, LIU Y, ZHANG X, et al. Real-time continuous locomotion mode recognition and transition prediction for human with lower limb exoskeleton[J]. IEEE J Biomed Health Inform, 2025, 29(2): 1074-1086.
|
| [13] |
CARVALHO S P, FIGUEIREDO J, CERQUEIRA J J, et al. Locomotion mode prediction in real-life walking with and without ankle-foot exoskeleton assistance[J]. Appl Intell, 2025, 55: 546.
|
| [14] |
黄品高. 智能下肢假肢运动意图的感测与识别关键技术研究[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2020.
|
|
HUANG P G. Study on the key technologies of motion intention sensing and recognition of intelligent lower limb prostheses[D]. Shenzhen: The University of Chinese Academy of Sciences (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), 2020.
|
| [15] |
陈辉, 任志刚, 冯祖仁, 等. 基于IMU和运动学的四足机器人对角支撑状态估计算法[J]. 控制与决策, 2024, 39(9): 2894-2902.
|
|
CHEN H, REN Z G, FENG Z R, et al. State estimation for diagonal support of quadruped robot based on IMU and kinematics[J]. Control Decision, 2024, 39(9): 2894-2902.
|
| [16] |
杨平, 陈浩源, 高睿馨, 等. 基于低成本惯性测量单元和力敏电阻的足部三维运动数据建模[J]. 中国康复理论与实践, 2024, 30(10): 1224-1231.
doi: 10.3969/j.issn.1006-9771.2024.10.013
|
|
YANG P, CHEN H Y, GAO R X, et al. Three-dimensional modeling of foot motion based on low-cost inertial measurement unit and force sensing resistor[J]. Chin J Rehabil Theory Pract, 2024, 30(10): 1224-1231.
|
| [17] |
SU B Y, WANG J, LIU S Q, et al. A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(5): 1032-1042.
|
| [18] |
盛敏, 夏安琦, 王可林, 等. 基于几何与物理特征融合的智能下肢假肢运动意图识别[J]. 控制与决策, 2022, 37(4): 953-961.
|
|
SHENG M, XIA A Q, WANG K L, et al. Movement intention recognition of intelligent lower limb prosthesis based on the fusion of geometric and physical features[J]. Control Decision, 2022, 37(4): 953-961.
|
| [19] |
KIM H, LEE D, MALDONADO-CONTRERAS J Y, et al. Mode-unified intent estimation of a robotic prosthesis using deep-learning[J]. IEEE Robot Autom Lett, 2025, 10(4): 3206-3213.
|
| [20] |
唐易, 陈奕希, 喻洪流, 等. 一种面向下肢假肢的运动意图识别方法及验证[J]. 信息与控制, 2023, 52(5): 598-606.
|
|
TANG Y, CHEN Y X, YU H L, et al. Research and verification of a motion intention recognition method for lower limb prosthesis[J]. Inform Control, 2023, 52(5): 598-606.
|
| [21] |
CHEN Z, ZHANG T. Evaluation of basic sports actions for students based on DTW posture matching algorithm[J]. System Soft Comput, 2025, 7: 200196.
|
| [22] |
HAQUE M R, ISLAM M R, SAZONOV E, et al. Swing-phase detection of locomotive mode transitions for smooth multi-functional robotic lower-limb prosthesis control[J]. Front Robot AI, 2024, 11: 1267072.
|
| [23] |
ZHENG E, WAN J, GAO S, et al. Adaptive locomotion transition recognition with wearable sensors for lower limb robotic prosthesis[J]. IEEE ASME Trans Mechatron, 2024, 29(1): 279-289.
|
| [24] |
王启宁, 郑恩昊, 陈保君, 等. 面向人机融合的智能动力下肢假肢研究现状与挑战[J]. 自动化学报, 2016, 42(12): 1780-1793.
|
|
WANG Q N, ZHENG E H, CHEN B J, et al. Recent progress and challenges of robotic lower-limb prostheses for human-robot integration[J]. Acta Automatica Sinica, 2016, 42(12): 1780-1793.
|
| [25] |
盛敏, 刘双庆, 王婕, 等. 基于GMM-HMM模型的智能下肢假肢运动意图识别[J]. 仪器仪表学报, 2019, 40(5): 169-178.
|
|
SHENG M, LIU S Q, WANG J, et al. Motion intent recognition of intelligent lower limb prosthesis based on GMM-HMM[J]. Chin J Sci Instrum, 2019, 40(5): 169-178.
|
| [26] |
邵企能, 王禾, 胡天羿, 等. 年龄与性别对人体步态生物力学特征的影响[J]. 应用力学学报, 2022, 39(6): 1193-1202.
|
|
SHAO Q N, WANG H, HU T Y, et al. Effects of age and gender on biomechanical characteristics of human gait[J]. Chin J Appl Mechan, 2022, 39(6): 1193-1202.
|
| [27] |
WINTER D A. Biomechanics of normal and pathological gait[J]. J Mot Behav, 1989, 21(4): 337-355.
|
| [28] |
BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series[C]. Seattle:Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, 1994.
|
| [29] |
苏本跃, 张利, 何清旋, 等. 基于小波特征匹配的短时人体行为识别[J]. 系统仿真学报, 2023, 35(1): 158-168.
doi: 10.16182/j.issn1004731x.joss.22-0176
|
|
SU B Y, ZHANG L, HE Q X, et al. Short-time human activity recognition based on wavelet features matching[J]. J System Simul, 2023, 35(1): 158-168.
|
| [30] |
CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Trans Intell Syst Technol, 2011, 2(3): 1-27.
|
| [31] |
周绍磊, 廖剑, 史贤俊. 基于Fisher准则和最大熵原理的SVM核参数选择方法[J]. 控制与决策, 2014, 29(11): 1991-1996.
|
|
ZHOU S L, LIAO J, SHI X J. SVM parameters selection method based on Fisher criterion and maximum entropy principle[J]. Control Decision, 2014, 29(11): 1991-1996.
|
| [32] |
AU S K, WEBER J, HERR H. Powered ankle-foot prosthesis improves walking metabolic economy[J]. IEEE Trans Robot, 2009, 25(1): 51-66.
|
| [33] |
苏本跃, 王婕, 刘双庆, 等. 惯性动捕数据驱动下的智能下肢假肢运动意图识别方法[J]. 自动化学报, 2020, 46(7): 1517-1530.
|
|
SU B Y, WANG J, LIU S Q, et al. An improved motion intent recognition method for intelligent lower limb prosthesis driven by inertial motion capture data[J]. Acta Automatica Sinica, 2020, 46(7): 1517-1530.
|
| [34] |
夏安琦. 基于融合特征及分层策略的下肢假肢运动意图识别[D]. 安庆: 安庆师范大学, 2021.
|
|
XIA A Q. Motion intention recognition of lower limb prosthesis based on fusion feature and stratification strategy[D]. Anqing: Anqing Normal University, 2021.
|
| [35] |
WANG N, AMBIKAIRAJAH E, LOVELL N H, et al. Accelerometry based classification of walking patterns using time-frequency analysis[C]. Lyon:2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007.
|
| [36] |
HE H, TAN Y, ZHANG W. A wavelet tensor fuzzy clustering scheme for multi-sensor human activity recognition[J]. Eng Appl Artif Intell, 2018, 70: 109-122.
|
| [37] |
苏本跃, 宗文杰, 刘文瑶, 等. 基于足底动力相数据和小波变换自适应分解的下肢意图识别方法[J]. 控制与决策, 2025, 40(10): 3005-3018.
|
|
SU B Y, ZONG W J, LIU W Y, et al. Lower limb prosthesis intention recognition method based on powered plantarflexion phase data and wavelet transform adaptive decomposition[J]. Control Decision, 2025, 40(10): 3005-3018.
|
| [38] |
SHENG M, WANG W J, TONG T T, et al. Motion intent recognition in intelligent lower limb prosthesis using one-dimensional dual-tree complex wavelet transforms[J]. Comp Intell Neurosci, 2021, 2021: 563173.
|
| [39] |
LIU Y, AN H L, MA H X, et al. Novel feature extraction and locomotion mode classification using intelligent lower-limb prosthesis[J]. Machines, 2023, 11(2): 235.
|
| [40] |
ZHANG P, ZHANG J, ELSABBAGH A. Lower limb motion intention recognition based on sEMG fusion features[J]. IEEE Sens J, 2022, 22(7): 7005-7014.
|