《中国康复理论与实践》 ›› 2019, Vol. 25 ›› Issue (10): 1197-1201.doi: 10.3969/j.issn.1006-9771.2019.10.015

• 康复工程与辅助技术 • 上一篇    下一篇

基于磁共振成像残肢三维重建模型设计的压紧/释放型大腿假肢接受腔

孟昭建1,2, 张明2, 梁锦伦2   

  1. 1.广东省工伤康复中心康复研究所,广东广州市 510400;
    2.香港理工大学生物医学工程系,香港
  • 出版日期:2019-10-25 发布日期:2019-10-30
  • 通讯作者: 孟昭建,E-mail: mecca.meng@connect.polyu.hk E-mail:mecca.meng@connect.polyu.hk
  • 作者简介:孟昭建(1983-),男,汉族,陕西西安市人,硕士,助理研究员,主要研究方向:假肢接受腔设计、3D打印。

Design of Compression/Release Stabilized Transfemoral Prosthetic Socket Based on Magnetic Resonance Imaging Based Three-dimensional Reconstruction Model of Residual Limb

MENG Zhao-jian1,2, ZHANG Ming2, LEUNG Kam-lun2   

  1. 1.Rehabilitation Research Institute, Guangdong Provincial Work Injury Rehabilitation Center, Guangzhou, Guangdong 510400, China;
    2.Biomedical Engineering Department, the Hong Kong Polytechnic University, Hong Kong, China
  • Published:2019-10-25 Online:2019-10-30
  • Contact: MENG Zhao-jian, E-mail: mecca.meng@connect.polyu.hk E-mail:mecca.meng@connect.polyu.hk

摘要: 目的 探讨基于磁共振成像三维重建的残肢上设计和制作坐骨下缘压紧/释放型大腿假肢接受腔。 方法 采用1例大腿截肢患者的磁共振成像作为三维重建素材,接受腔的基础模板在SolidWorks软件中以零等距三维重建后的残肢外表面创建。利用软件的扫描曲面等功能对模板接受腔进行设计,此接受腔的穿戴结果应用有限元进行分析并用实验方法加以验证。 结果 压紧/释放型接受腔被成功创建,并利用有限元模拟得到残肢表面的压力分布。有限元分析得出残肢表面最大接触压力为218.5 kPa,F-scan压力传感器测得的最大压力为239 kPa。患者在穿戴接受腔后,残肢表面应力值在疼痛阈值和疼痛可耐受范围内,患者在问卷反馈中对此接受腔感到满意。 结论 基于重建的残肢三维影像资料构造压紧/释放型大腿假肢接受腔,为假肢接受腔的设计研究提供了一种更好的尝试。特别是当有限元分析和计算机辅助设计相结合时,计算机可以模拟接受腔的试样过程而对接受腔设计在初期进行优化,从而减少在患者身上的反复尝试。

关键词: 大腿截肢, 假肢, 接受腔, 三维重建, 压力/释放, 有限元

Abstract: Objective To study the design and fabrication of the sub-ischial compression/release stabilized (CRS) transfemoral prosthetic socket based on 3D reconstructed residual limb. Methods The magnetic resonance imaging (MRI) of a transfemoral amputee's residual limb was used for 3D construction. The base of the socket was constructed by the surface of the 3D geometry of residual limb in SolidWorks, and then the sketching and swept surface function was applied to create the compression and release structure. The CRS socket was analyzed by finite element method. The simulation was then validated experimentally. Results The transfemoral CRS socket was successfully constructed in SolidWorks and assembled with the residual limb for finite element modeling. The simulation results showed the residual limb pressure distribution over the CRS socket compression areas. The maximum residual limb pressure was predicted to be 218.5 kPa by the finite element model, and experimentally measured was 239 kPa. The maximum residual limb pressure was within the pain threshold and pain tolerance range, and the patient was satisfied with the socket. Conclusion This attempt of reconstructing residual limb MRI to design the CRS prosthetic socket provided another way to study the socket behavior in the prosthesis fitting process. The FEM-CAD method can improve the socket design and fitting process with computer simulation to reduce the trial on patients.

Key words: transfemoral amputation, prosthesis, socket, three-dimensional reconstruction, compression/release, finite element

中图分类号: