《中国康复理论与实践》 ›› 2020, Vol. 26 ›› Issue (6): 668-672.doi: 10.3969/j.issn.1006-9771.2020.06.008
李晓琳1a,张斌龙2,樊瑞文1a,徐敏杰1a,黄幸1a,舒鑫1a,李昌明1a,谭中建1b(),常静玲1a(
)
收稿日期:
2019-12-09
修回日期:
2020-02-12
出版日期:
2020-06-25
发布日期:
2020-06-29
通讯作者:
谭中建,常静玲
E-mail:tzj_1120@163.com;ear6979@163.com
作者简介:
李晓琳(1991-),女,汉族,黑龙江北安市人,博士研究生,主要研究方向:中医药防治脑病的临床与神经影像学实验研究。
基金资助:
LI Xiao-lin1a,ZHANG Bin-long2,FAN Rui-wen1a,XU Min-jie1a,HUANG Xing1a,SHU Xin1a,LI Chang-ming1a,TAN Zhong-jian1b(),CHANG Jing-ling1a(
)
Received:
2019-12-09
Revised:
2020-02-12
Published:
2020-06-25
Online:
2020-06-29
Contact:
TAN Zhong-jian,CHANG Jing-ling
E-mail:tzj_1120@163.com;ear6979@163.com
Supported by:
摘要:
卒中后失语的认知神经学机制研究为语言学各个层面的阐释提供了研究思路。词图研究范式的不同刺激模式及语言刺激模型可根据语言损伤的特点应用于不同损伤类型的失语症康复中,结合功能磁共振成像可以更客观地呈现脑损伤及恢复机制,语言任务和影像学的交互应用也成为失语症机制研究的新方向。
中图分类号:
李晓琳,张斌龙,樊瑞文,徐敏杰,黄幸,舒鑫,李昌明,谭中建,常静玲. 词图语言任务在卒中后失语功能磁共振成像实验中的刺激模式及模型研究进展[J]. 《中国康复理论与实践》, 2020, 26(6): 668-672.
LI Xiao-lin,ZHANG Bin-long,FAN Rui-wen,XU Min-jie,HUANG Xing,SHU Xin,LI Chang-ming,TAN Zhong-jian,CHANG Jing-ling. Stimulation Mode and Model of Word-picture Language Task in Functional Magnetic Resonance Imaging Test for Post-stroke Aphasia (review)[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2020, 26(6): 668-672.
[1] |
GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100):1151-1210.
doi: 10.1016/S0140-6736(17)32152-9 |
[2] |
GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet, 2017, 390(10100):1260-1344.
doi: 10.1016/S0140-6736(17)32130-X |
[3] |
Pike C, Kritzinger A, Pillay B. Social participation in working-age adults with aphasia: an updated systematic review[J]. Top Stroke Rehabil, 2017, 24(8):627-639.
doi: 10.1080/10749357.2017.1366012 |
[4] |
Wawrzyniak M, Hoffstaedter F, Klingbeil J, et al. Fronto-temporal interactions are functionally relevant for semantic control in language processing[J]. PLoS One, 2017, 12(5):e0177753.
doi: 10.1371/journal.pone.0177753 |
[5] |
Simmons-Mackie N, Worrall L, Murray L L, et al. The top ten: best practice recommendations for aphasia[J]. Aphasiology, 2016, 31(2):1-21.
doi: 10.1080/02687038.2016.1143083 |
[6] | Gregory H. Computational neuroanatomy of speech production[J]. Nat Rev Neurosci, 2012, 13(2):135-145. |
[7] |
Melinger A. Distinguishing languages from dialects: A litmus test using the picture-word interference task[J]. Cognition, 2018, 172:73-88.
doi: S0010-0277(17)30308-6 pmid: 29232596 |
[8] | Giezen M R, Emmorey K. Language co-activation and lexical selection in bimodal bilinguals: evidence from picture-word interference[J]. Biling (Camb Engl), 2016, 19(2):264-276. |
[9] |
Wang J, Wong A W K, Chen H C. Time course of syllabic and sub-syllabic processing in Mandarin word production: evidence from the picture-word interference paradigm[J]. Psychon Bull Rev, 2018, 25(3):1147-1152.
doi: 10.3758/s13423-017-1325-5 |
[10] |
MacLeod C M. Half a century of research on the Stroop effect: an integrative review[J]. Psychol Bull, 1991, 109(2):163-203.
pmid: 2034749 |
[11] |
Starreveld P A, Heij W L. Picture-word interference is a Stroop effect: a theoretical analysis and new empirical findings[J]. Psychon Bull Rev, 2017, 24(3):1-13.
doi: 10.3758/s13423-016-1113-7 |
[12] | Sreedharan S, Chandran A, Yanamala V R, et al. Self-regulation of language areas using real-time functional MRI in stroke patients with expressive aphasia[J]. Brain Imaging Behav, 2019. doi. 10.1007/s11682-019-00106-7.[ahead of print]. |
[13] |
Sims J A, Kapse K, Glynn P, et al. The relationships between the amount of spared tissue, percent signal change, and accuracy in semantic processing in aphasia[J]. Neuropsychologia, 2016, 84:113-126.
doi: 10.1016/j.neuropsychologia.2015.10.019 |
[14] |
Pillay S B, Gross W L, Graves W W, et al. The neural basis of successful word reading in aphasia[J]. J Cogn Neurosci, 2018, 30(4):514-525.
doi: 10.1162/jocn_a_01214 |
[15] | Martynova O V, Portnova G V, Balaev V V, et al. Comparative analysis of the brain activity during verbal and spatial thinking in healthy subjects and patients with speech disorders[J]. Zh Vyssh Nerv Deiat Im I P Pavlova, 2016, 66(3):313-326. |
[16] |
Bonner M F, Price A R, Peelle J E, et al. Semantics of the visual environment encoded in parahippocampal cortex[J]. J Cogn Neurosci, 2016, 28(3):361-378.
doi: 10.1162/jocn_a_00908 |
[17] |
Lee Y S, Zreik J T, Hamilton R H. Patterns of neural activity predict picture-naming performance of a patient with chronic aphasia[J]. Neuropsychologia, 2017, 94:52-60.
doi: 10.1016/j.neuropsychologia.2016.11.010 |
[18] | Li Y, Li P, Yang Q X, et al. Lexical-semantic search under different covert verbal fluency tasks: an fMRI study[J]. Front Behav Neurosci, 2017, 11:131. |
[19] |
Griffis J C, Nenert R, Allendorfer J B, et al. Linking left hemispheric tissue preservation to fMRI language task activation in chronic stroke patients[J]. Cortex, 2017, 96:1-18.
doi: S0010-9452(17)30288-5 pmid: 28961522 |
[20] |
Wilshire C, Singh S, Tattersall C. Serial order in word form retrieval: new insights from the auditory picture-word interference task[J]. Psychon Bull Rev, 2016, 23(1):299-305.
doi: 10.3758/s13423-015-0882-8 |
[21] |
Kuo P C, Tseng Y L, Zilles K, et al. Brain dynamics and connectivity networks under natural auditory stimulation[J]. Neuroimage, 2019, 202:116042.
doi: 10.1016/j.neuroimage.2019.116042 |
[22] |
You X, Zachery A N, Fanto E J, et al. fMRI prediction of naming change after adult temporal lobe epilepsy surgery: activation matters[J]. Epilepsia, 2019, 60(3):527-538.
doi: 10.1111/epi.14656 |
[23] | Omisade A, O'Grady C B, Schmidt M H, et al. Visual and auditory fMRI paradigms for presurgical language mapping: convergent validity and relationship to individual variables[J]. Neurol Res Int, 2019, 2019:6728120. |
[24] |
Ni B, Wang X, Yu T, et al. Pre-surgical language mapping in epilepsy: using fMRI in Chinese-speaking patients[J]. Front Hum Neurosci, 2019, 13:183.
doi: 10.3389/fnhum.2019.00183 |
[25] |
Venezia J H, Vaden K I, Rong F, et al. Auditory, visual and audiovisual speech processing streams in superior temporal sulcus[J]. Front Hum Neurosci, 2017, 11:174.
doi: 10.3389/fpsyg.2020.00174 |
[26] |
Xi Y, Li Q, Zhang M, et al. Optimized configuration of functional brain network for processing semantic audiovisual stimuli underlying the modulation of attention: a graph-based study[J]. Front Integr Neurosci, 2019, 13:67.
doi: 10.3389/fnint.2019.00067 |
[27] |
Carlson T A, Simmons R A, Nikolaus K, et al. The emergence of semantic meaning in the ventral temporal pathway[J]. J Cogn Neurosci, 2014, 26(1):120-131.
doi: 10.1162/jocn_a_00458 |
[28] |
Anderson A J, Bruni E, Lopopolo A, et al. Reading visually embodied meaning from the brain: visually grounded computational models decode visual-object mental imagery induced by written text[J]. Neuroimage, 2015, 120:309-322.
doi: 10.1016/j.neuroimage.2015.06.093 pmid: 26188260 |
[29] |
Wang J, Cherkassky V L, Just M A. Predicting the brain activation pattern associated with the propositional content of a sentence: modeling neural representations of events and states[J]. Hum Brain Mapp, 2017, 38(10):4865-4881.
doi: 10.1002/hbm.v38.10 |
[30] |
Handjaras G, Ricciardi E, Leo A, et al. How concepts are encoded in the human brain: a modality independent, category-based cortical organization of semantic knowledge[J]. Neuroimage, 2016, 135:232-242.
doi: 10.1016/j.neuroimage.2016.04.063 pmid: 27132545 |
[31] | Carota F, Kriegeskorte N, Nili H, et al. Representational similarity mapping of distributional semantics in left inferior frontal, middle temporal, and motor cortex[J]. Cereb Cortex, 2017, 27(1):294-309. |
[32] |
Pereira F, Lou B, Pritchett B, et al. Toward a universal decoder of linguistic meaning from brain activation[J]. Nat Commun, 2018, 9(1):963.
doi: 10.1038/s41467-018-03068-4 |
[33] |
Huth A G, de Heer W A, Griffiths T L, et al. Natural speech reveals the semantic maps that tile human cerebral cortex[J]. Nature, 2016, 532(7600):453-458.
doi: 10.1038/nature17637 |
[34] |
de Heer W A, Huth A G, Griffiths T L, et al. The hierarchical cortical organization of human speech processing[J]. J Neurosci, 2017, 37(27):6539-6557.
doi: 10.1523/JNEUROSCI.3267-16.2017 |
[35] |
Andrews M, Vigliocco G, Vinson D. Integrating experiential and distributional data to learn semantic representations[J]. Psychol Rev, 2009, 116(3):463-498.
doi: 10.1037/a0016261 pmid: 19618982 |
[36] |
Devereux B J, Clarke A, Tyler L K. Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway[J]. Sci Rep, 2018, 8(1):10636.
doi: 10.1038/s41598-018-28865-1 pmid: 30006530 |
[37] |
Binder J R, Conant L L, Humphries C J, et al. Toward a brain-based componential semantic representation[J]. Cogn Neuropsychol, 2016, 33(3-4):130-174.
doi: 10.1080/02643294.2016.1147426 |
[38] |
Vigliocco G, Vinson D P, Damian M F, et al. Semantic distance effects on object and action naming[J]. Cognition, 2002, 85(3):B61-B69.
doi: 10.1016/S0010-0277(02)00107-5 |
[39] |
Fernandino L, Humphries C J, Conant L L, et al. Heteromodal cortical areas encode sensory-motor features of word meaning[J]. J Neurosci, 2016, 36(38):9763-9769.
doi: 10.1523/JNEUROSCI.4095-15.2016 |
[40] |
Anderson A J, Lalor E C, Lin F, et al. Multiple regions of a cortical network commonly encode the meaning of words in multiple grammatical positions of read sentences[J]. Cereb Cortex, 2019, 29(6):2396-2411.
doi: 10.1093/cercor/bhy110 |
[41] | Anderson A J, Binder J R, Fernandino L, et al. Predicting neural activity patterns associated with sentences using a neurobiologically motivated model of semantic representation[J]. Cereb Cortex, 2017, 27(9):4379-4395. |
[42] |
Francis W S, Taylor R S, Gutiérrez M, et al. The effects of bilingual language proficiency on recall accuracy and semantic clustering in free recall output: evidence for shared semantic associations across languages[J]. Memory, 2018, 26(10):1364-1378.
doi: 10.1080/09658211.2018.1476551 pmid: 29781375 |
[43] |
Chen L, Lambon Ralph M A, Rogers T T. A unified model of human semantic knowledge and its disorders[J]. Nat Hum Behav, 2017, 1(3):0039.
doi: 10.1038/s41562-016-0039 |
[44] |
Sloutsky V M, Yim H, Yao X, et al. An associative account of the development of word learning[J]. Cogn Psychol, 2017, 97:1-30.
doi: 10.1016/j.cogpsych.2017.06.001 |
[45] |
Huth A G, Shinji N, Vu A T, et al. A continuous semantic space describes the representation of thousands of object and action categories across the human brain[J]. Neuron, 2012, 76(6):1210-1224.
doi: 10.1016/j.neuron.2012.10.014 |
[46] |
Shapira-Lichter I, Klovatch I, Nathan D, et al. Task-specific aspects of goal-directed word generation identified via simultaneous EEG-fMRI[J]. J Cogn Neurosci, 2016, 28(9):1406-1418.
doi: 10.1162/jocn_a_00976 |
[47] |
Rundle M M, Coch D, Connolly A C, et al. Dissociating frequency and animacy effects in visual word processing: an fMRI study[J]. Brain Lang, 2018, 183:54-63.
doi: 10.1016/j.bandl.2018.05.005 |
[48] |
Piai V, Meyer L, Dronkers N F, et al. Neuroplasticity of language in left-hemisphere stroke: evidence linking subsecond electrophysiology and structural connections[J]. Hum Brain Mapp, 2017, 38(6):3151-3162.
doi: 10.1002/hbm.23581 |
[1] | 邵伟婷, 雷江华. 反应中断再定向干预孤独症谱系障碍儿童刻板语言的效果:Scoping综述[J]. 《中国康复理论与实践》, 2024, 30(1): 10-20. |
[2] | 王航宇, 葛可可, 范永红, 都丽露, 邹敏, 封磊. 基于ICD-11和ICF主动式音乐疗法改善认知障碍老年人认知功能的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 36-43. |
[3] | 闻嘉宁, 金秋艳, 张琦, 李杰, 司琦. 认知参与型身体活动对发展儿童青少年执行功能的效果:基于ICF的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 44-53. |
[4] | 葛可可, 范永红, 王航宇, 都丽露, 李长江, 邹敏. 失眠老年人正念干预健康效益的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 54-60. |
[5] | 张婧雅, 邹敏, 孙宏伟, 孙昌隆, 朱峻同. 听障儿童青少年焦虑或抑郁情绪心理干预效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1004-1011. |
[6] | 王俊宇, 杨永, 袁逊, 谢婷, 庄洁. 高强度间歇训练对健康儿童青少年执行功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1012-1020. |
[7] | 魏晓微, 杨剑, 魏春艳. 特殊教育学校孤独症谱系障碍儿童参与适应性瑜伽活动的心理与行为效益的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1021-1028. |
[8] | 杨亚茹, 杨剑. 基于WHO-HPS架构学校身体活动相关健康服务及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1040-1047. |
[9] | 史佳伟, 李凌宇, 杨浩杰, 王琴潞, 邹海欧. 预康复对全膝关节置换术后患者的有效性:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1057-1064. |
[10] | 蒋长好, 黄辰, 高晓妍, 戴元富, 赵国明. 神经反馈训练对老年人认知功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 903-909. |
[11] | 魏晓微, 杨剑, 魏春艳, 贺启令. 学校环境下适应性体育课程促进智力与发展性残疾儿童心理运动发展的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 910-918. |
[12] | 张园, 杨剑. 基于世界卫生组织健康促进学校架构的学校健康服务及效果:Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(7): 791-799. |
[13] | 王少璞, 陈钢. 基于世界卫生组织健康促进学校架构的心理行为健康服务及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(7): 800-807. |
[14] | 蒋长好, 高晓妍. 短时身体活动对儿童认知功能影响的系统综述[J]. 《中国康复理论与实践》, 2023, 29(6): 667-672. |
[15] | 袁媛, 杨剑. 社区老年人身体活动融合慢性病管理的健康效益:Scoping综述[J]. 《中国康复理论与实践》, 2023, 29(5): 541-550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|