《中国康复理论与实践》 ›› 2020, Vol. 26 ›› Issue (11): 1322-1326.doi: 10.3969/j.issn.1006-9771.2020.11.013
常田田1,张君2,翁琳曼1,朱毅3,王雪强1(),张志杰4(
)
收稿日期:
2019-08-09
修回日期:
2019-11-05
出版日期:
2020-11-25
发布日期:
2020-11-24
通讯作者:
王雪强,张志杰
E-mail:qiang897@163.com;sportspt@163.com
作者简介:
常田田(1995-),女,汉族,河南洛阳市人,硕士研究生,主要研究方向:运动康复、疾病康复、肌肉肌腱特性。
CHANG Tian-tian1,ZHANG Jun2,WENG Lin-man1,ZHU Yi3,WANG Xue-qiang1(),ZHANG Zhi-jie4(
)
Received:
2019-08-09
Revised:
2019-11-05
Published:
2020-11-25
Online:
2020-11-24
Contact:
WANG Xue-qiang,ZHANG Zhi-jie
E-mail:qiang897@163.com;sportspt@163.com
摘要:
硬度可以客观反映肌肉、肌腱的功能状态。抗阻训练可导致肌肉、肌腱硬度发生改变,不同训练方式和强度对肌肉、肌腱硬度的影响不尽相同。本文综述机械载荷对健康人肌肉、肌腱硬度的影响,以及肌肉、肌腱对机械载荷的适应机制。
中图分类号:
常田田,张君,翁琳曼,朱毅,王雪强,张志杰. 机械载荷对肌肉和肌腱硬度影响的研究进展[J]. 《中国康复理论与实践》, 2020, 26(11): 1322-1326.
CHANG Tian-tian,ZHANG Jun,WENG Lin-man,ZHU Yi,WANG Xue-qiang,ZHANG Zhi-jie. Advance in Mechanical Load for Muscle and Tendon Stiffness (review)[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2020, 26(11): 1322-1326.
[1] |
Hody S, Croisier J L, Bury T, et al. Eccentric muscle contractions: risks and benefits[J]. Front Physiol, 2019, 10:536.
doi: 10.3389/fphys.2019.00536 |
[2] | Vogt M, Hoppeler H H. Eccentric exercise: mechanisms and effects when used as training regime or training adjunct[J]. J Appl Phys, 2014, 116(11):1446-1454. |
[3] | Franchi M V, Reeves N D, Narici M V. Skeletal muscle remodeling in response to eccentric vs. concentric loading: morphological, molecular, and metabolic adaptations[J]. Fron Phys, 2017, 8:447. |
[4] |
Duhig S J, Bourne M N, Buhmann R L, et al. Effect of concentric and eccentric hamstring training on sprint recovery, strength and muscle architecture in inexperienced athletes[J]. J Sci Med Sport, 2019, 22(7):769-774.
doi: 10.1016/j.jsams.2019.01.010 |
[5] |
Oliveira A S, Corvino R B, Caputo F, et al. Effects of fast-velocity eccentric resistance training on early and late rate of force development[J]. Eur J Sport Sci, 2016, 16(2):199-205.
doi: 10.1080/17461391.2015.1010593 |
[6] |
Douglas J, Pearson S, Ross A, et al. Chronic adaptations to eccentric training: a systematic review[J]. Sports Med, 2017, 47(5):917-941.
doi: 10.1007/s40279-016-0628-4 pmid: 27647157 |
[7] |
Massey G J, Balshaw T G, Maden-Wilkinson T M, et al. Tendinous tissue properties after short- and long-term functional overload: differences between controls, 12 weeks and 4 years of resistance training[J]. Acta Physiol (Oxf), 2018, 222(4):e13019.
doi: 10.1111/apha.2018.222.issue-4 |
[8] |
Mroczek D, Maćkała K, Chmura P, et al. Effects of plyometrics training on muscle stiffness changes in male volleyball players[J]. J Strength Cond Res, 2019, 33(4):910-921.
doi: 10.1519/JSC.0000000000003074 |
[9] |
Mendes B, Firmino T, Oliveira R, et al. Hamstring stiffness pattern during contraction in healthy individuals: analysis by ultrasound-based shear wave elastography[J]. Eur J Appl Physiol, 2018, 118:2403-2415.
doi: 10.1007/s00421-018-3967-z pmid: 30109503 |
[10] |
Lacourpaille L, Nordez A, Hug F, et al. Early detection of exercise-induced muscle damage using elastography[J]. Eur J Appl Physiol, 2017, 117:2047-2056.
doi: 10.1007/s00421-017-3695-9 pmid: 28780603 |
[11] |
Akagi R, Shikiba T, Tanaka J, et al. A six-week resistance training program does not change shear modulus of the triceps brachii[J]. J Appl Biomech, 2016, 32(4):373-378.
doi: 10.1123/jab.2015-0290 |
[12] |
Kraemer W J, Ratamess N A. Fundamentals of resistance training: progression and exercise prescription[J]. Med Sci Sports Exerc, 2004, 36(4):674-688.
doi: 10.1249/01.MSS.0000121945.36635.61 |
[13] |
Ochi E, Tsuchiya Y, Nosaka K. Differences in post-exercise T2 relaxation time changes between eccentric and concentric contractions of the elbow flexors[J]. Eur J Appl Physiol, 2016, 116(11-12):2145-2154.
doi: 10.1007/s00421-016-3462-3 |
[14] |
Hyldahl R D, Hubal M J. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise[J]. Muscle Nerve, 2014, 49(2):155-170.
doi: 10.1002/mus.24077 pmid: 24030935 |
[15] |
Iodice P, Ripari P, Pezzulo G. Local high-frequency vibration therapy following eccentric exercises reduces muscle soreness perception and posture alterations in elite athletes[J]. Eur J Appl Physiol, 2019, 119(2):539-549.
doi: 10.1007/s00421-018-4026-5 |
[16] |
Chen T C, Yang T J, Huang M J, et al. Damage and the repeated bout effect of arm, leg, and trunk muscles induced by eccentric resistance exercises[J]. Scand J Med Sci Sports, 2019, 29:725-735.
doi: 10.1111/sms.2019.29.issue-5 |
[17] |
Lacourpaille L, Nordez A, Hug F, et al. Time-course effect of exercise-induced muscle damage on localized muscle mechanical properties assessed using elastography[J]. Acta Physiol (Oxf), 2014, 211(1):135-146.
doi: 10.1111/apha.12272 pmid: 24602146 |
[18] |
Hoang P D, Herbert R D, Gandevia S C. Effects of eccentric exercise on passive mechanical properties of human gastrocnemius in vivo[J]. Med Sci Sports Exerc, 2007, 39(5):849-857.
doi: 10.1249/MSS.0b013e318033499b |
[19] | Ploutz-Snyder L L, Convertino V A, Dudley G A. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume[J]. Am J Physiol, 1995, 269(3 Pt 2):R536-543. |
[20] |
Lacourpaille L, Nordez A, Doguet V, et al. Effect of damaging exercise on electromechanical delay[J]. Muscle Nerve, 2016, 54(1):136-141.
doi: 10.1002/mus.25024 pmid: 26789531 |
[21] |
Murayama M, Nosaka K, Yoneda T, et al. Changes in hardness of the human elbow flexor muscles after eccentric exercise[J]. Eur J Appl Physiol, 2000, 82(5-6):361-367.
pmid: 10985588 |
[22] |
Howell J N, Chleboun G, Conatser R. Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans[J]. J Physiol, 1993, 464:183-196.
doi: 10.1113/jphysiol.1993.sp019629 |
[23] |
Whitehead N P, Weerakkody N S, Gregory J E, et al. Changes in passive tension of muscle in humans and animals after eccentric exercise[J]. J Physiol, 2001, 533(Pt 2):593-604.
doi: 10.1111/tjp.2001.533.issue-2 |
[24] |
Butterfield T A, Herzog W. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage[J]. J Appl Physiol (1985), 2006, 100(5):1489-1498.
doi: 10.1152/japplphysiol.00524.2005 |
[25] |
Kubo K, Kanehisa H, Ito M, et al. Effects of isometric training on the elasticity of human tendon structures in vivo[J]. J Appl Physiol (1985), 2001, 91(1):26-32.
doi: 10.1152/jappl.2001.91.1.26 |
[26] |
Akagi R, Tanaka J, Shikiba T, et al. Muscle hardness of the triceps brachii before and after a resistance exercise session: a shear wave ultrasound elastography study[J]. Acta Radiol, 2015, 56(12):1487-1493.
doi: 10.1177/0284185114559765 |
[27] |
Franchi M V, Atherton P J, Reeves N D, et al. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle[J]. Acta Physiol (Oxf), 2014, 210(3):642-654.
doi: 10.1111/apha.12225 pmid: 24387247 |
[28] |
Blazevich A J, Cannavan D, Coleman D R, et al. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles[J]. J Appl Physiol (1985), 2007, 103(5):1565-1575.
doi: 10.1152/japplphysiol.00578.2007 |
[29] |
Potier T G, Alexander C M, Seynnes O R. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement[J]. Eur J Appl Physiol, 2009, 105(6):939-944.
doi: 10.1007/s00421-008-0980-7 pmid: 19271232 |
[30] |
Butterfield T A, Herzog W. The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise[J]. Pflugers Arch, 2006, 451(5):688-700.
doi: 10.1007/s00424-005-1503-6 |
[31] |
Proske U, Morgan D L. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications[J]. J Physiol, 2001, 537(Pt 2):333-345.
doi: 10.1111/tjp.2001.537.issue-2 |
[32] |
Butterfield T A, Herzog W. Quantification of muscle fiber strain during in vivo repetitive stretch-shortening cycles[J]. J Appl Physiol (1985), 2005, 99(2):593-602.
doi: 10.1152/japplphysiol.01128.2004 |
[33] |
Eby S F, Cloud B A, Brandenburg J E, et al. Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood[J]. Clin Biomech (Bristol, Avon), 2015, 30(1):22-27.
doi: 10.1016/j.clinbiomech.2014.11.011 |
[34] |
Dietsch A M, Clark H M, Steiner J N, et al. Effects of age, sex, and body position on orofacial muscle tone in healthy adults[J]. J Speech Lang Hear Res, 2015, 58(4):1145-1150.
doi: 10.1044/2015_JSLHR-S-14-0325 |
[35] |
Yoshitake Y, Takai Y, Kanehisa H, et al. Muscle shear modulus measured with ultrasound shear-wave elastography across a wide range of contraction intensity[J]. Muscle Nerve, 2014, 50(1):103-113.
doi: 10.1002/mus.24104 pmid: 24155045 |
[36] |
Galloway M T, Lalley A L, Shearn J T. The role of mechanical loading in tendon development, maintenance, injury, and repair[J]. J Bone Joint Surg Am, 2013, 95(17):1620-1628.
doi: 10.2106/JBJS.L.01004 pmid: 24005204 |
[37] | Heinemeier K M, Kjaer M. In vivo investigation of tendon responses to mechanical loading[J]. J Musculoskelet Neuronal Interact, 2011, 11(2):115-123. |
[38] |
Kjaer M, Magnusson P, Krogsgaard M, et al. Extracellular matrix adaptation of tendon and skeletal muscle to exercise[J]. J Anat, 2006, 208(4):445-450.
doi: 10.1111/joa.2006.208.issue-4 |
[39] |
Lavagnino M, Arnoczky S P. In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells[J]. J Orthop Res, 2005, 23(5):1211-1218.
pmid: 15908162 |
[40] |
Wang J H. Mechanobiology of tendon[J]. J Biomech, 2006, 39(9):1563-1582.
doi: 10.1016/j.jbiomech.2005.05.011 |
[41] |
Aboodarda S J, Yusof A, Abu Osman N A, et al. Enhanced performance with elastic resistance during the eccentric phase of a countermovement jump[J]. Int J Sports Physiol Perform, 2013, 8(2):181-187.
doi: 10.1123/ijspp.8.2.181 |
[42] |
Bridgeman L A, Gill N D, Dulson D K, et al. The effect of exercise-induced muscle damage after a bout of accentuated eccentric load drop jumps and the repeated bout effect[J]. J Strength Cond Res, 2017, 31(2):386-394.
doi: 10.1519/JSC.0000000000001725 pmid: 27893481 |
[43] |
Bridgeman L A, McGuigan M R, Gill N D, et al. The effects of accentuated eccentric loading on the drop jump exercise and the subsequent postactivation potentiation response[J]. J Strength Cond Res, 2017, 31(6):1620-1626.
doi: 10.1519/JSC.0000000000001630 pmid: 28538313 |
[44] |
Hughes J D, Massiah R G, Clarke R D. The potentiating effect of an accentuated eccentric load on countermovement jump performance[J]. J Strength Cond Res, 2016, 30(12):3450-3455.
doi: 10.1519/JSC.0000000000001455 |
[45] |
Bohm S, Mersmann F, Arampatzis A. Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults[J]. Sports Med Open, 2015, 1(1):7.
doi: 10.1186/s40798-015-0009-9 |
[46] |
Kongsgaard M, Reitelseder S, Pedersen T G, et al. Region specific patellar tendon hypertrophy in humans following resistance training[J]. Acta Physiol (Oxf), 2007, 191(2):111-121.
doi: 10.1111/aps.2007.191.issue-2 |
[47] |
Arampatzis A, Karamanidis K, Albracht K. Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude[J]. J Exp Biol, 2007, 210(Pt 15):2743-2753.
doi: 10.1242/jeb.003814 |
[48] |
Eriksen C S, Henkel C, Svensson R B, et al. Lower tendon stiffness in very old compared with old individuals is unaffected by short-term resistance training of skeletal muscle[J]. J Appl Physiol (1985), 2018, 125(1):205-214.
doi: 10.1152/japplphysiol.00028.2018 |
[49] |
Malliaras P, Kamal B, Nowell A, et al. Patellar tendon adaptation in relation to load-intensity and contraction type[J]. J Biomech, 2013, 46(11):1893-1899.
doi: 10.1016/j.jbiomech.2013.04.022 pmid: 23773532 |
[50] |
Arampatzis A, Peper A, Bierbaum S, et al. Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain[J]. J Biomech, 2010, 43(16):3073-3079.
doi: 10.1016/j.jbiomech.2010.08.014 |
[51] |
Kubo K, Ikebukuro T, Maki A, et al. Time course of changes in the human Achilles tendon properties and metabolism during training and detraining in vivo[J]. Eur J Appl Physiol, 2012, 112(7):2679-2691.
doi: 10.1007/s00421-011-2248-x |
[52] |
Bloomquist K, Langberg H, Karlsen S, et al. Effect of range of motion in heavy load squatting on muscle and tendon adaptations[J]. Eur J Appl Physiol, 2013, 113(8):2133-2142.
doi: 10.1007/s00421-013-2642-7 pmid: 23604798 |
[53] |
Heinemeier K M, Schjerling P, Heinemeier J, et al. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C[J]. FASEB J, 2013, 27:2074-2079.
doi: 10.1096/fj.12-225599 pmid: 23401563 |
[54] |
Smith K, Rennie M J. New approaches and recent results concerning human-tissue collagen synjournal[J]. Curr Opin Clin Nutr Metab Care, 2007, 10(5):582-590.
doi: 10.1097/MCO.0b013e328285d858 |
[55] |
Magnusson S P, Narici M V, Maganaris C N, et al. Human tendon behaviour and adaptation, in vivo[J]. J Physiol, 2008, 586(1):71-81.
doi: 10.1113/jphysiol.2007.139105 |
[56] |
Kubo K, Ishigaki T, Ikebukuro T. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo[J]. Physiol Rep, 2017, 5(15):e13374.
doi: 10.14814/phy2.13374 |
[57] |
Obst S J, Heales L J, Schrader B L, et al. Are the mechanical or material properties of the Achilles and patellar tendons altered in tendinopathy? A systematic review with meta-analysis[J]. Sports Med, 2018, 48(9):2179-2198.
doi: 10.1007/s40279-018-0956-7 |
[58] |
Wilson G J, Murphy A J, Pryor J F. Musculotendinous stiffness: its relationship to eccentric, isometric, and concentric performance[J]. J Appl Physiol (1985), 1994, 76(6):2714-2719.
doi: 10.1152/jappl.1994.76.6.2714 |
[59] |
Waugh C M, Korff T, Fath F, et al. Rapid force production in children and adults: mechanical and neural contributions[J]. Med Sci Sports Exerc, 2013, 45(4):762-771.
doi: 10.1249/MSS.0b013e31827a67ba |
[1] | 邵伟婷, 雷江华. 反应中断再定向干预孤独症谱系障碍儿童刻板语言的效果:Scoping综述[J]. 《中国康复理论与实践》, 2024, 30(1): 10-20. |
[2] | 王航宇, 葛可可, 范永红, 都丽露, 邹敏, 封磊. 基于ICD-11和ICF主动式音乐疗法改善认知障碍老年人认知功能的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 36-43. |
[3] | 闻嘉宁, 金秋艳, 张琦, 李杰, 司琦. 认知参与型身体活动对发展儿童青少年执行功能的效果:基于ICF的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 44-53. |
[4] | 葛可可, 范永红, 王航宇, 都丽露, 李长江, 邹敏. 失眠老年人正念干预健康效益的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 54-60. |
[5] | 魏梦力, 钟亚平, 周易文, 桂辉贤, 关烨明, 于婷婷. 单侧前交叉韧带重建患者步行双侧下肢肌肉协同模式差异[J]. 《中国康复理论与实践》, 2024, 30(1): 95-104. |
[6] | 张婧雅, 邹敏, 孙宏伟, 孙昌隆, 朱峻同. 听障儿童青少年焦虑或抑郁情绪心理干预效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1004-1011. |
[7] | 王俊宇, 杨永, 袁逊, 谢婷, 庄洁. 高强度间歇训练对健康儿童青少年执行功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1012-1020. |
[8] | 魏晓微, 杨剑, 魏春艳. 特殊教育学校孤独症谱系障碍儿童参与适应性瑜伽活动的心理与行为效益的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1021-1028. |
[9] | 杨亚茹, 杨剑. 基于WHO-HPS架构学校身体活动相关健康服务及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1040-1047. |
[10] | 史佳伟, 李凌宇, 杨浩杰, 王琴潞, 邹海欧. 预康复对全膝关节置换术后患者的有效性:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1057-1064. |
[11] | 张冠聪, 黄秋晨, 顾蕊, 刘四海, 胡春英, 刘克敏. 不同神经肌肉训练方法对早期膝骨关节炎患者疼痛和运动功能效果的比较[J]. 《中国康复理论与实践》, 2023, 29(9): 1090-1097. |
[12] | 沈星星, 陈伟健, 李聪聪, 李俊毅, 王帅, 叶子璇, 向瑞安, 许学猛. 单侧腰椎间盘突出症患者椎旁肌功能特征[J]. 《中国康复理论与实践》, 2023, 29(9): 1098-1103. |
[13] | 蒋长好, 黄辰, 高晓妍, 戴元富, 赵国明. 神经反馈训练对老年人认知功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 903-909. |
[14] | 魏晓微, 杨剑, 魏春艳, 贺启令. 学校环境下适应性体育课程促进智力与发展性残疾儿童心理运动发展的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 910-918. |
[15] | 朱婷, 张玉红. 基于ICF构建特殊教育学校音乐教育的理论架构与方法体系[J]. 《中国康复理论与实践》, 2023, 29(8): 977-984. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|