《中国康复理论与实践》 ›› 2021, Vol. 27 ›› Issue (4): 478-486.doi: 10.3969/j.issn.1006-9771.2021.04.014

• 辅助技术 • 上一篇    下一篇

基于力跟踪的上肢康复机器人系统中视觉与触觉反馈融合技术研究

王昱1,2,3,吴向东1,施长城2,3(),张佳楫2,3,李娜2,3,马冶浩2,3,陶亮4,唐敏4,左国坤2,3   

  1. 1.西南交通大学机械工程学院,四川 成都市 610031
    2.中国科学院宁波材料与工程研究所,慈溪生物医学工程研究所,浙江 宁波市 315300
    3.中国科学院宁波材料与工程研究所,医用植介入材料浙江省工程研究中心,浙江 宁波市 315300
    4.宁波市康复医院神经康复科,浙江 宁波市 315040
  • 收稿日期:2020-08-21 修回日期:2020-11-19 出版日期:2021-04-25 发布日期:2021-04-20
  • 通讯作者: 施长城 E-mail:changchengshi@nimte.ac.cn
  • 作者简介:王昱(1994-),男,汉族,山西忻州市人,硕士研究生,主要研究方向:人机交互技术|施长城(1981-),男,汉族,重庆市人,博士,副研究员,硕士生导师,主要研究方向:多感觉反馈融合、生命体征监测与康复工程技术。
  • 基金资助:
    宁波市"科技创新2025"重大专项项目(2018B10073);浙江省重点研发计划项目(2019C03090);浙江省自然科学基金项目(LQ20F030003);中国博士科学基金项目(2019M662128)

Visual and Haptic Feedback Fusion Based on Force Tracking in Upper-limb Rehabilitation Robot System

Yu WANG1,2,3,Xiang-dong WU1,Chang-cheng SHI2,3(),Jia-ji ZHANG2,3,Na LI2,3,Ye-hao MA2,3,Liang TAO4,Min TANG4,Guo-kun ZUO2,3   

  1. 1.School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
    2.Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315300, China
    3.Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315300, China
    4.Department of Neurorehabilitation, Ningbo Rehabilitation Hospital, Ningbo, Zhejiang 315040, China
  • Received:2020-08-21 Revised:2020-11-19 Published:2021-04-25 Online:2021-04-20
  • Contact: Chang-cheng SHI E-mail:changchengshi@nimte.ac.cn
  • Supported by:
    Major Scientific and Technological Projects in Ningbo City(2018B10073);Key Research and Development Program of Zhejiang(2019C03090);Natural Science Foundation of Zhejiang Province(LQ20F030003);China Postdoctoral Science Foundation Grant(2019M662128)

摘要: 目的

针对现有上肢康复训练系统提供视觉和触觉反馈无法关联的问题,本文以自主研发的末端牵引式上肢康复机器人为基础,研究基于力跟踪的视觉与触觉反馈融合技术及其对于上肢训练的效果。

方法

在虚拟环境中构建力学模型的基础上,本文设计两种与视觉反馈融合的触觉反馈,分别为两物体间靠近时的排斥力以及物体在介质平面移动时的摩擦力,进而采用基于力跟踪的机器人控制算法将虚拟环境中构建的力反馈通过操纵杆传递给用户。招募8例健康受试者,分别在有无反馈融合模式下进行对照训练。在训练过程中采集受试者与系统的实际和期望力反馈,以及三角肌前束、三角肌后束、肱二头肌和肱三头肌的表面肌电信号。计算有反馈融合模式下期望与实际力反馈之间的均方根误差,用于表征基于力跟踪的多感觉反馈融合效果。计算两种模式下的肌电积分值(iEMG)和单位时间内肌电幅值(EMG/T)以探究融合反馈技术对上肢运动训练的影响。

结果

在有反馈融合模式下,实际与期望交互力反馈的均方根误差为(0.757±0.171) N;肱二头肌、肱三头肌、三角肌前束和后束的iEMG均显著大于无反馈融合模式下(|t| > 7.965, P < 0.001);前三块肌肉的EMG/T显著大于无反馈融合模式下(|t| > 6.363, P < 0.001)。

结论

设计的上肢康复机器人训练系统可以精确地将虚拟环境中构建的力反馈传递给用户,通过视觉与触觉融合增加机器人系统对于训练者外周神经功能的刺激,促使训练者付出更多的努力。基于力跟踪的视觉与触觉反馈融合技术的优势在于可以在虚拟环境中自由构建力学模型,力反馈模式不受空间位置的限制,且可以在同一位置叠加两种以上的力学模型,从而使力反馈效果与虚拟环境中的视觉反馈更加匹配,激发训练者的运动康复兴趣,增强人机交互体验感。

关键词: 上肢, 运动, 康复, 虚拟现实, 力反馈, 表面肌电, 多感觉融合反馈

Abstract: Objective

To solve the issue regarding a low correlation between visual and haptic feedback provided by the current upper-limb rehabilitation training system, this study was implemented based on the end-effector based upper-limb rehabilitation robot developed in the lab. A novel visual and haptic feedback fusion technology based on force tracking was investigated and its effect on upper-limb training was also studied.

Methods

Based on the force model constructed in a virtual environment, two types of haptic feedbacks correlated to the visual feedback were designed, including the repulsive force when two objects getting close and the friction force when the object moving above medium surfaces. The haptic feedback constructed in the virtual environment was delivered to the trainees by using force tracking based on robot controlling algorithm. Eight health subjects were recruited and trained with and without feedback fusion. In the training process, the actual and expected haptic feedbacks as well as the surface electromyography (EMG) signals from anterior deltoid, posterior deltoid, biceps, and triceps were collected. The root means square error (RMSE) between the actual and expected haptic feedback was calculated under the feedback fusion training mode to characterize the force tracking-based multi-sensory feedback fusion technology. The integrated EMG values (iEMG) and EMG amplitudes per unit time (EMG/T) under two training modes were measured to explore the effect of feedback fusion technology on the upper-limb motor training.

Results

Under feedback fusion training mode, the RMSE between actual and expected haptic feedback was (0.757±0.171) N. The values of iEMG from four muscles were significantly higher (|t| > 7.965, P < 0.001), and the values of EMG/T from the biceps, triceps and anterior deltoid were significantly larger under feedback fusion training mode than under the training mode without feedback fusion.

Conclusion

The proposed upper-limb rehabilitation robot training system could accurately transmit the haptic feedback constructed under the virtual environment to the trainees. This system could increase the stimulation to trainees' peripheral nervous function through visual and haptic feedback fusion as well as increase the trainees' training effort. The advantages of force tracking-based visual and haptic feedback fusion technology are to freely construct the force model under the virtual environment and the haptic feedback mode is not constrained by the spatial position. Moreover, two or more types of force models can be superimposed in the same spatial position by using this technology that could improve the matching effect between haptic feedback and visual feedback under a virtual environment. The trainees' motor rehabilitation interest could be stimulated and the experience feeling of human-robot interaction could also be enhanced.

Key words: upper-limb, motor, rehabilitation, virtual reality, haptic feedback, surface electromyography, multi-sensory feedback fusion

中图分类号: