《中国康复理论与实践》 ›› 2022, Vol. 28 ›› Issue (7): 848-854.doi: 10.3969/j.issn.1006-9771.2022.07.017
收稿日期:
2022-03-24
修回日期:
2022-07-11
出版日期:
2022-07-25
发布日期:
2022-08-08
通讯作者:
肖晓飞
E-mail:xxf1013@126.com
作者简介:
黄兆欣(1997-),女,汉族,山东菏泽市人,硕士研究生,主要研究方向:运动生物力学。|肖晓飞(1980-),男,汉族,山东荣成市人,博士,副教授,主要研究方向:ICF应用、康复科学。
基金资助:
HUANG Zhaoxin,LI Lei,ZHONG Jiamin,GUO Cunyang,ZHANG Liqiang,CHENG Zongshen,XIAO Xiaofei()
Received:
2022-03-24
Revised:
2022-07-11
Published:
2022-07-25
Online:
2022-08-08
Contact:
XIAO Xiaofei
E-mail:xxf1013@126.com
Supported by:
摘要:
目的 探究Y平衡测试时下肢肌肉肌电特征和姿势稳定性,以及两者间的关系。
方法 2021年10月至11月,招募滨州医学院18~22岁女性大学生26例完成Y平衡测试,同步采集支撑腿股直肌、股二头肌、胫前肌和腓肠肌外侧表面肌电,计算均方根(RMS)、积分肌电值(iEMG)和肌肉贡献率;三维测力平台测试支撑腿压力中心(COP)总轨迹长、前后(A/P)和内外侧(M/L)轨迹长。
结果 Y平衡测试的3个方向中,股直肌RMS均最大(χ2 > 56.952, P < 0.001),胫前肌iEMG、肌肉贡献率最大(χ2 > 38.507, P < 0.001);前侧时各轨迹长最短(P < 0.05);前侧时,COP总轨迹长与股二头肌iEMG (r = 0.452, P = 0.02)和腓肠肌iEMG (r = 0.397, P = 0.045)正相关;后内侧时,COP总轨迹长度与腓肠肌iEMG正相关(r = 0.478, P = 0.014);后外侧时,COP总轨迹长度与胫前肌iEMG正相关(r = 0.437, P = 0.026)。
结论 Y平衡测试3个方向中,支撑腿股直肌、胫前肌和腓肠肌激活较为显著,不同肌电信号特征有所不同;姿势稳定性后外侧时最优;不同方向下,关节伸肌或屈肌对保持动态姿势稳定性的重要性不同。
中图分类号:
黄兆欣,李磊,钟嘉敏,郭存洋,张利强,程宗申,肖晓飞. 18~22岁女性Y平衡测试的下肢表面肌电和姿势稳定性特征[J]. 《中国康复理论与实践》, 2022, 28(7): 848-854.
HUANG Zhaoxin,LI Lei,ZHONG Jiamin,GUO Cunyang,ZHANG Liqiang,CHENG Zongshen,XIAO Xiaofei. Characteristics of surface electromyography and postural stability of lower limb muscles in Y-balance test in females aged 18 to 22 years[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(7): 848-854.
表1
YBT不同方向各肌肉RMS比较 单位:%"
方向 | a.股直肌 | b.股二头肌 | c.胫前肌 | d.腓肠肌 | χ2值 | P值 | 两两比较 |
---|---|---|---|---|---|---|---|
e.前侧 | 5.31(3.09, 7.39) | 0.51(0.30, 0.75) | 4.10(3.11, 5.40) | 3.20(2.24, 4.50) | 56.952 | < 0.001 | a = c = d > b |
f.后内侧 | 6.96(4.75, 9.96) | 0.33(0.25, 0.61) | 5.37(4.20, 7.30) | 2.40(1.19, 3.28) | 74.396 | < 0.001 | a = c > d > b |
g.后外侧 | 7.10(3.74, 9.69) | 0.58 (0.38, 1.06) | 5.90(4.09, 7.98) | 2.35(1.10, 3.25) | 66.044 | < 0.001 | a = c > d > b |
χ2值 | 4.102 | 6.130 | 7.484 | 5.957 | |||
P值 | 0.129 | 0.047 | 0.024 | 0.051 | |||
两两比较 | e = g = f | g > f, e = f, e = g | g > e, e = f, f = g | e = g = f |
表2
YBT不同方向各肌肉iEMG比较 单位:μV∙s"
方向 | a.股直肌 | b.股二头肌 | c.胫前肌 | d.腓肠肌 | χ2值 | P值 | 两两比较 |
---|---|---|---|---|---|---|---|
e.前侧 | 11.06(7.75, 18.22) | 9.17(6.94, 11.71) | 24.55(15.29, 35.13) | 19.14(15.74, 21.72) | 38.507 | < 0.001 | c = d > a > b |
f.后内侧 | 15.64(9.52, 23.37) | 7.87(4.36, 10.80) | 31.65(23.27, 38.78) | 13.62(11.12, 18.62) | 56.312 | < 0.001 | c > a = d > b |
g.后外侧 | 16.34(9.79, 23.06) | 10.50(8.08, 15.95) | 37.21(24.57, 52.53) | 12.44(9.45, 21.26) | 40.056 | < 0.001 | c > a = b = d |
χ2值 | 3.957 | 6.894 | 6.865 | 15.841 | |||
P值 | 0.138 | 0.032 | 0.032 | < 0.001 | |||
两两比较 | e = g = f | g > f, e = f, e = g | g > e, e = f, f = g | e > f = g |
表3
YBT不同方向各肌肉肌肉贡献率比较 单位:%"
方向 | a.股直肌 | b.股二头肌 | c.胫前肌 | d.腓肠肌 | χ2值 | P值 | 两两比较 |
---|---|---|---|---|---|---|---|
e.前侧 | 18.14(12.75, 22.08) | 14.55(10.13, 18.42) | 34.13(25.78, 49.37) | 30.05(23.12, 39.16) | 48.155 | < 0.001 | c = d > a = b |
f.后内侧 | 22.36(17.17, 30.18) | 9.19(7.48, 13.98) | 46.11(35.51, 51.06) | 21.36(13.70, 27.10) | 67.576 | < 0.001 | c > a = d > b |
g.后外侧 | 19.94(14.56, 26.31) | 13.22(10.09, 17.74) | 48.23(38.94, 52.30) | 18.29(12.18, 21.76) | 51.102 | < 0.001 | c > a = d = b |
χ2值 | 4.242 | 8.958 | 7.072 | 21.548 | |||
P值 | 0.120 | 0.011 | 0.029 | < 0.001 | |||
两两比较 | e = f = g | e > f, e = g, f = g | g > e, e = f, f = g | e > f = g |
表4
YBT伸展距离分数和COP轨迹长度"
项目 | 前侧 | 后内侧 | 后外侧 | F值 | P值 |
---|---|---|---|---|---|
YBT原始距离/cm | 55.62±4.34 | 81.68±9.15a | 82.67±8.96a | 100.405 | < 0.001 |
YBT标准分/% | 67.39±5.72 | 99.09±12.68a | 100.20±11.67a | 82.123 | < 0.001 |
COP总轨迹长/m | 0.39±0.10 | 0.42±0.10 | 0.48±0.11a,b | 3.270 | 0.044 |
COP A/P轨迹长/m | 0.29±0.08 | 0.29±0.07 | 0.34±0.08a,b | 2.894 | 0.062 |
COP M/L轨迹长/m | 0.19±0.06 | 0.24±0.06a | 0.27±0.07a | 9.050 | < 0.001 |
表5
下肢肌肉肌电特征与COP总轨迹长的相关性"
肌电 | 前侧 | 后内侧 | 后外侧 | ||||||
---|---|---|---|---|---|---|---|---|---|
r值 | P值 | r值 | P值 | r值 | P值 | ||||
RMS值 | 股直肌 | 0.095 | 0.643 | 0.102 | 0.619 | -0.128 | 0.533 | ||
股二头肌 | 0.041 | 0.844 | -0.091 | 0.657 | -0.080 | 0.699 | |||
胫前肌 | -0.148 | 0.470 | -0.295 | 0.143 | -0.170 | 0.407 | |||
腓肠肌 | 0.064 | 0.756 | -0.104 | 0.615 | -0.093 | 0.650 | |||
iEMG值 | 股直肌 | 0.147 | 0.473 | 0.121 | 0.555 | -0.069 | 0.736 | ||
股二头肌 | 0.452 | 0.020 | 0.199 | 0.329 | 0.132 | 0.519 | |||
胫前肌 | 0.050 | 0.807 | 0.062 | 0.764 | 0.437 | 0.026 | |||
腓肠肌 | 0.397 | 0.045 | 0.478 | 0.014 | -0.006 | 0.975 | |||
肌肉贡献率 | 股直肌 | 0.063 | 0.759 | 0.034 | 0.870 | -0.277 | 0.171 | ||
股二头肌 | 0.305 | 0.130 | 0.171 | 0.405 | 0.106 | 0.608 | |||
胫前肌 | -0.179 | 0.380 | -0.092 | 0.655 | 0.319 | 0.112 | |||
腓肠肌 | -0.017 | 0.933 | 0.138 | 0.502 | -0.173 | 0.397 |
[1] |
SCHLENSTEDT C, ARNOLD M, MANCINI M, et al. The effect of unilateral balance training on postural control of the contralateral limb[J]. J Sports Sci, 2017, 35(22): 2265-2271.
doi: 10.1080/02640414.2016.1265660 |
[2] |
COUGHLAN G F, FULLAM K, DELAHUNT E, et al. A comparison between performance on selected directions of the star excursion balance test and the Y balance test[J]. J Athl Train, 2012, 47(4): 366-371.
doi: 10.4085/1062-6050-47.4.03 |
[3] |
HERTEL J, BRAHAM R A, HALE S A, et al. Simplifying the star excursion balance test: analyses of subjects with and without chronic ankle instability[J]. J Orthop Sports Phys Ther, 2006, 36(3): 131-137.
doi: 10.2519/jospt.2006.36.3.131 |
[4] | KAMINSKI T W, GRIBBLE P. The Star Excursion Balance Test as a measurement tool[J]. Athlet Ther Today, 2003, 8(2): 46-47. |
[5] | 潘俊祥, 尤旭, 邹琳, 等. 膝关节屈伸肌力比对平衡能力的影响研究[J]. 西南师范大学学报(自然科学版), 2020, 45(8): 102-110. |
PAN J X, YOU X, ZOU L, et al. On effect of ratio of flexor and extensor on balance control knee joint[J]. J Southwest Chin Norm Univ (Nat Sci Ed), 2020, 45(8): 102-110. | |
[6] |
LEE D K, KANG M H, LEE T S, et al. Relationships among the Y balance test, Berg Balance Scale, and lower limb strength in middle-aged and older females[J]. Braz J Phys Ther, 2015, 19(3): 227-234.
doi: 10.1590/bjpt-rbf.2014.0096 |
[7] | EARL J E, HERTEL J. Lower-extremity muscle activation during the Star Excursion Balance Tests[J]. Sport Rehabil, 2001, 10: 93-104. |
[8] | PLISKY P J, GORMAN P P, BUTLER R J, et al. The reliability of an instrumented device for measuring components of the star excursion balance test[J]. N Am J Sports Phys Ther, 2009, 4(2): 92-99. |
[9] | SEKULIC D, PRUS D, ZEVRNJA A, et al. Predicting injury status in adolescent dancers involved in different dance styles: a prospective study[J]. Children (Basel), 2020, 7(12): 297. |
[10] | GANESH G S, CHHABRA D, PATTNAIK M, et al. Effect of trunk muscles training using a star excursion balance test grid on strength, endurance and disability in persons with chronic low back pain[J]. Back Musculoskelet Rehabil, 2015, 28(3): 521-530. |
[11] |
DUCHENE J, HOGREL J Y. A model of EMG generation[J]. IEEE Trans Biomed Eng, 2000, 47(2): 192-201.
doi: 10.1109/10.821754 |
[12] | NORRIS B, TRUDELLE-JACKSON E. Hip- and thigh-muscle activation during the Star Excursion Balance Test[J]. Sport Rehabil, 2011, 20(4): 428-441. |
[13] | 唐桥, 张海忠. 综合性项目运动员动态平衡能力与双侧膝关节肌力、下肢爆发力的相关性研究[J]. 中国体育科技, 2019, 55(5): 65-71, 80. |
TANG Q, ZHANG H Z. Research on the correlation of dynamic balance ability and bilateral knee joint strength and lower limb explosive force in comprehensive sport athletes[J]. Chin Sport Sci Technol, 2019, 55(5): 65-71, 80. | |
[14] | RIEMANN B L, LEPHART S M. The sensorimotor system, part I: the physiologic basis of functional joint stability[J]. J Athl Train, 2002, 37(1): 71. |
[15] |
BHANOT K, KAUR N, BRODY L T, et al. Hip and trunk muscle activity during the star excursion balance test in healthy adults[J]. J Sport Rehabil, 2018, 28: 1-33.
doi: 10.1123/jsr.2017-0079 |
[16] |
NICKY V M, MEDDELER B M, HOOGEBOOM T J, et al. How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults[J]. PLoS One, 2017, 12(12): e0189876.
doi: 10.1371/journal.pone.0189876 |
[17] |
BALASUKUMARAN T, GOTTLIEB U, SPRINGER S. Muscle activation patterns during backward walking in people with chronic ankle instability[J]. BMC Musculoskelet Disord, 2020, 21(1): 489.
doi: 10.1186/s12891-020-03512-x |
[18] |
AFA B, GFG A, PXFA B, et al. Y balance test: Are we doing it right?[J]. J Sci Med Sport, 2020, 23(2): 194-199.
doi: 10.1016/j.jsams.2019.09.016 |
[19] | ZAFAR H, ALGHADIR A H, IQBAL Z A, et al. Influence of different jaw positions on dynamic balance using Y-balance test[J]. Brain Behav, 2020, 10(1): e01507. |
[20] |
CORATELLA G, TORNATORE G, CACCAVALE F, et al. The activation of gluteal, thigh, and lower back muscles in different squat variations performed by competitive bodybuilders: implications for resistance training[J]. Int J Environ Res Public Health, 2021, 18(2): 772.
doi: 10.3390/ijerph18020772 |
[21] |
ORTEGA S L, IBARRA S, PIERCE R, et al. Kinematic and kinetic factors associated with leg reach asymmetry during the Star Excursion Balance Test in division I athletes[J]. Phys Ther Sport, 2020, 45: 63-70.
doi: 10.1016/j.ptsp.2020.05.012 |
[22] |
PIONNIER R, DÉCOUFOUR N, BARBIER F, et al. A new approach of the Star Excursion Balance Test to assess dynamic postural control in people complaining from chronic ankle instability[J]. Gait Posture, 2016, 45: 97-102.
doi: 10.1016/j.gaitpost.2016.01.013 |
[23] |
KIM S M, QU F, LAM W K. Analogy and explicit motor learning in dynamic balance: posturography and performance analyses[J]. Eur J Sport Sci, 2021, 21(8): 1129-1139.
doi: 10.1080/17461391.2020.1827046 |
[24] |
KARAGIANNAKIS D N, IATRIDOU K I, MANDALIDIS D G. Ankle muscles activation and postural stability with Star Excursion Balance Test in healthy individuals[J]. Hum Mov Sci, 2020, 69:102563.
doi: 10.1016/j.humov.2019.102563 |
[25] | 郑洁皎, 胡佑红, 俞卓伟. 表面肌电图在神经肌肉功能评定中的应用[J]. 中国康复理论与实践, 2007, 13(8): 741-742. |
ZHENG J J, HU Y H, YU Z W. Application of surface electromyography in the estimate of neural-muscle function[J]. Chin J Rehabil Theory Pract, 2007, 13(8): 741-742. | |
[26] |
ELIASSEN W, SAETERBAKKEN A H, VAN DEN TILLAAR R. Comparison of bilateral and unilateral squat exercises on barbell kinematics and muscle activation[J]. Int J Sports Phys Ther, 2018, 13(5): 871-881.
doi: 10.26603/ijspt20180871 |
[27] |
LEE J H, KIM S, HEO J, et al. Differences in the muscle activities of the quadriceps femoris and hamstrings while performing various squat exercises[J]. BMC Sports Sci Med Rehabil, 2022, 14(1): 12.
doi: 10.1186/s13102-022-00404-6 |
[28] | 刘晓磊, 李强, 杨华清, 等. 离心运动训练对髌股疼痛综合征患者膝关节功能和神经肌肉控制的效果[J]. 中国康复理论与实践, 2021, 27(11): 1334-1339. |
LIU X L, LI Q, YANG H Q, et al. Effect of eccentric exercises on knee function and neuromuscular control of patellofemoral pain syndrome[J]. Chin J Rehabil Theory Pract, 2021, 27(11): 1334-1339. | |
[29] | 王国祥. 不同运动负荷时肌肉氧含量与表面肌电图的变化特点[J]. 体育学刊, 2006, 13(3): 51-53. |
WANG G X. Characteristics of variation of muscle oxygen content and surface electromyogram of bicycle racers in motion[J]. J Phys Educ, 2006, 13(3): 51-53. | |
[30] | 范洪彬, 孙有平, 季浏. 基于表面肌电贡献率的上肢不同力量素质指标年龄、性别通用性研究[J]. 中国体育科技, 2016, 52(5): 83-97. |
FAN H B, SUN Y P, JI L. Age and gender universality research on different upper limbs strength indicators in physical fitness test based surface electromyography muscular contribution[J]. Chin Sport Sci Technol, 2016, 52(5): 83-97. | |
[31] |
GOROSTIAGA E M, GONZÁLEZ-IZAL M, MALANDA A, et al. Blood lactate and sEMG at different knee angles during fatiguing leg press exercise[J]. Eur J Appl Physiol, 2012, 112(4): 1349-1358.
doi: 10.1007/s00421-011-2090-1 |
[32] |
KANG M H, LEE D K, PARK K H, et al. Association of ankle kinematics and performance on the Y-balance test with inclinometer measurements on the weight-bearing-lunge test[J]. J Sport Rehabil, 2015, 24(1): 62-67.
doi: 10.1123/jsr.2013-0117 |
[33] | PERRIMAN A, LEAHY E, SEMCIW A I. The effect of open- versus closed-kinetic-chain exercises on anterior tibial laxity, strength, and function following anterior cruciate ligament reconstruction: a systematic review and meta-analysis[J]. J Orthop Sports Phys Ther, 2018, 48(7): 552-566. |
[34] | 刘辉, 刘波, 沈海, 等. 开链和闭链训练治疗膝关节半月板损伤[J]. 中国组织工程研究, 2020, 24(11): 1733-1737. |
LIU H, LIU B, SHEN H, et al. Open and closed kinetic chain exercises for meniscus lesions[J]. Chin J Tiss Engin Res, 2020, 24(11): 1733-1737. | |
[35] |
NEAL B S, LACK S D, LANKHORST N E, et al. Risk factors for patellofemoral pain: a systematic review and meta-analysis[J]. Br J Sports Med, 2019, 53(5): 270-281.
doi: 10.1136/bjsports-2017-098890 |
[36] |
SCHORDERET C, HILFIKER R, ALLET L. The role of the dominant leg while assessing balance performance. A systematic review and meta-analysis[J]. Gait Posture, 2021, 84: 66-78.
doi: 10.1016/j.gaitpost.2020.11.008 |
[1] | 崔尧, 丛芳, 黄富表, 曾明, 颜如秀. 不同镜像神经元训练策略下脑与肌肉的活动特征:基于近红外光谱与表面肌电图技术[J]. 《中国康复理论与实践》, 2023, 29(7): 782-790. |
[2] | 黄冬旭, 李依诺, 李秋捷, 杨辰, 万祥林. 基于加速度信号的功能性踝关节不稳者动态姿势稳定性评价方法[J]. 《中国康复理论与实践》, 2023, 29(6): 654-666. |
[3] | 李丹, 王剑雄, 黄茂茂, 胥方元, 曾秋, 李佶钖, 李洋, 夏翠宏, 郑雅丹, 胥章彧, 方雯凤, 万腾刚. 健康中老年女性上下楼梯时下肢肌肉的表面肌电图表现[J]. 《中国康复理论与实践》, 2023, 29(6): 731-737. |
[4] | 于歌, 王璐, 陈亚平. 全身振动训练对慢性踝关节不稳姿势稳定性影响的Meta分析[J]. 《中国康复理论与实践》, 2023, 29(4): 423-432. |
[5] | 朱旭,刘静,董泽萍,仇大伟. 基于表面肌电图手势动作意图识别的系统综述[J]. 《中国康复理论与实践》, 2022, 28(9): 1032-1038. |
[6] | 田亚星,洪永锋,阚秀丽,沈显山,毛晶,江炎,何紫艳,吴俣,胡伟,孙晓宁,胡顺银. 徒手感觉刺激对脑卒中偏瘫患者手指痉挛效果的表面肌电图观察[J]. 《中国康复理论与实践》, 2022, 28(5): 515-519. |
[7] | 周越,刘旭,孙悦梅,胡春英,朱悦彤,李渤. 不同运动模式下Flexi-bar训练对躯干稳定性肌肉的影响[J]. 《中国康复理论与实践》, 2022, 28(4): 384-388. |
[8] | 张静,郭峰. 指屈肌主动不足条件下屈指运动时神经肌肉的调控[J]. 《中国康复理论与实践》, 2021, 27(9): 1104-1109. |
[9] | 杨晓颜,周璇,毛琳,陈荣霞,靳梦蝶,夏义玲,王姗姗,汪德轩,杜青. 中西医结合治疗婴儿先天性肌性斜颈的效果[J]. 《中国康复理论与实践》, 2020, 26(8): 897-902. |
[10] | 黄武杰,李雅萍,刘红,江征. 慢性腰痛的表面肌电研究进展[J]. 《中国康复理论与实践》, 2020, 26(7): 802-806. |
[11] | 周哲,沈夏锋,沈小花,吴雪娇,王凤爽,荣积峰,吴毅. 椅面前倾对脑卒中偏瘫患者坐-站转移的影响[J]. 《中国康复理论与实践》, 2020, 26(7): 825-829. |
[12] | 辜禹,陈楠,刘倩,伍勰. 肌肉协同理论在小儿脑性瘫痪康复评定中的应用进展[J]. 《中国康复理论与实践》, 2020, 26(6): 673-677. |
[13] | 王慧灵,冯晓东,李瑞青,兰晓燕,赵薇,张铭. 表面肌电图在环咽肌失弛缓患者吞咽障碍评定中的应用[J]. 《中国康复理论与实践》, 2020, 26(11): 1275-1279. |
[14] | 刘红, 侯美金, 黄武杰, 林荣, 江征. 慢性非特异性腰痛三维步态分析的研究现状[J]. 《中国康复理论与实践》, 2019, 25(8): 882-885. |
[15] | 卞荣, 陆晓, 熊浩, 曹文月, 朱海燕, 蔡雨生. 两种主动直腿抬高动作相关肌群募集模式的分析[J]. 《中国康复理论与实践》, 2019, 25(7): 840-844. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 534
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 578
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|