[1] |
ZHAO W G, ZHU Y B, MA J T, et al. Age- and gender-specific epidemiologic characteristics of major intra-articular fractures: five-year data from a level 1 trauma center[J]. Orthop Surg, 2021, 13(3): 900-907.
|
[2] |
ZHANG D, NAZARIAN A, RODRIGUEZ E K. Post-traumatic elbow stiffness: pathogenesis and current treatments[J]. Shoulder Elbow, 2020, 12(1): 38-45.
|
[3] |
MASCI G, CAZZATO G, MILANO G, et al. The stiff elbow: current concepts[J]. Orthop Rev (Pavia), 2020, 12(Suppl 1): 8661.
doi: 10.4081/or.2020.8661
pmid: 32913596
|
[4] |
VERSTUYFT L, CAEKEBEKE P, VAN RIET R. Postoperative rehabilitation in elbow surgery[J]. J Clin Orthop Trauma, 2021, 20: 101479.
|
[5] |
EVERDING N G, MASCHKE S D, HOYEN H A, et al. Prevention and treatment of elbow stiffness: a 5-year update[J]. J Hand Surg Am, 2013, 38(12): 2496-2507.
doi: 10.1016/j.jhsa.2013.06.007
pmid: 24210721
|
[6] |
CHINCHALKAR S J, SZEKERES M. Rehabilitation of elbow trauma[J]. Hand Clin, 2004, 20(4): 363-374.
doi: 10.1016/j.hcl.2004.06.004
pmid: 15539093
|
[7] |
DAVILA S A, JOHNSTON-JONES K. Managing the stiff elbow: operative, nonoperative, and postoperative techniques[J]. J Hand Ther, 2006, 19(2): 268-281.
doi: 10.1197/j.jht.2006.02.017
pmid: 16713873
|
[8] |
CHARLES S J, CHEN S R, MITTWEDE P, et al. Risk factors for complications and reoperation following operative management of displaced midshaft clavicle fractures[J]. J Shoulder Elbow Surg, 2022, 31(10): e498-e506.
|
[9] |
COHEN M S, SCHIMMEL D R, MASUDA K, et al. Structural and biochemical evaluation of the elbow capsule after trauma[J]. J Shoulder Elbow Surg, 2007, 16(4): 484-490.
doi: 10.1016/j.jse.2006.06.018
pmid: 17368926
|
[10] |
HILDEBRAND K A, ZHANG M, GERMSCHEID N M, et al. Cellular, matrix, and growth factor components of the joint capsule are modified early in the process of posttraumatic contracture formation in a rabbit model[J]. Acta Orthop, 2008, 79(1): 116-125.
doi: 10.1080/17453670710014860
pmid: 18283583
|
[11] |
YU S, LOWE T, GRIFFIN L, et al. Single bout of vibration-induced hamstrings fatigue reduces quadriceps inhibition and coactivation of knee muscles after anterior cruciate ligament (ACL) reconstruction[J]. J Electromyogr Kinesiol, 2020, 55: 102464.
|
[12] |
FUSARO I, ORSINI S, STIGNANI K S, et al. Elbow rehabilitation in traumatic pathology[J]. Musculoskelet Surg, 2014, 98(Suppl 1):95-102.
|
[13] |
CHOWDHURY R H, REAZ M B, ALI M A, et al. Surface electromyography signal processing and classification techniques[J]. Sensors (Basel), 2013, 13(9): 12431-12466.
|
[14] |
DROST G, STEGEMAN D F, VAN ENGELEN B G, et al. Clinical applications of high-density surface EMG: a systematic review[J]. J Electromyogr Kinesiol, 2006, 16(6): 586-602.
|
[15] |
李建华, 王健. 表面肌电图诊断技术临床应用[M]. 杭州: 浙江大学出社, 2015: 308-309.
|
|
LI J H, WANG J. Applications of sEMG in Cilinical Diagnosis and Evaluations[M]. Hangzhou: Zhejiang University Press, 2015: 308-309.
|
[16] |
赵晨钰, 毕胜, 卢茜, 等. 脑卒中恢复期患者肘关节最大等长性屈伸运动时肩肘肌群表面肌电信号特征性研究[J]. 中国康复医学杂志, 2018, 33(9): 1036-1042.
|
|
ZHAO C Y, BI S, LU Q, et al. Features of surface electromyographic signal of shoulder and elbow muscle in convalescent stroke patients during elbow maximum isometric flexion and extension[J]. Chin J Rehabil Med, 2018, 33(9): 1036-1042.
|
[17] |
陈煜, 管红波, 黄桂兰, 等. 偏瘫肩痛患者肩胛肌肉的表面肌电特征研究[J]. 中国康复医学杂志, 2020, 35(4): 447-452.
|
|
CHEN Y, GUAN H B, HUANG G L, et al. A study on surface EMG characteristics of scapular muscles as shoulder anteflexion in patients with hemiplegic shoulder pain[J]. Chin J Rehabil Med, 2020, 35(4): 447-452.
|
[18] |
HARDING P, RASEKABA T, SMIRNEOS L, et al. Early mobilisation for elbow fractures in adults[J]. Cochrane Database Syst Rev, 2011(6): D8130.
|
[19] |
SZEKERES M, CHINCHALKAR S J, KING G J. Optimizing elbow rehabilitation after instability[J]. Hand Clin, 2008, 24(1): 27-38.
doi: 10.1016/j.hcl.2007.11.005
pmid: 18299018
|
[20] |
DICKERSON C R, ALENABI T, MARTIN B J, et al. Shoulder muscular activity in individuals with low back pain and spinal cord injury during seated manual load transfer tasks[J]. Ergonomics, 2018, 61(8): 1094-1101.
doi: 10.1080/00140139.2018.1447690
pmid: 29504495
|
[21] |
ESCAMILLA R F, YAMASHIRO K, PAULOS L, et al. Shoulder muscle activity and function in common shoulder rehabilitation exercises[J]. Sports Med, 2009, 39(8): 663-685.
doi: 10.2165/00007256-200939080-00004
pmid: 19769415
|
[22] |
吴小鹰, 侯文生, 郑小林, 等. 上臂表面肌电信号与肘关节角度的相关性研究[J]. 航天医学与医学工程, 2007, 20(4): 259-263.
|
|
WU X Y, HOU W S, ZHENG X L, et al. Relationship between surface EMG and angle of elbow joint[J]. Space Med Med Engineer, 2007, 20(4): 259-263.
|
[23] |
GARCIA S A, RODRIGUEZ K M, KRISHNAN C, et al. Type of measurement used influences central and peripheral contributions to quadriceps weakness after anterior cruciate ligament (ACL) reconstruction[J]. Phys Ther Sport, 2020, 46: 14-22.
doi: S1466-853X(20)30484-3
pmid: 32846386
|
[24] |
INGERSOLL C D, GRINDSTAFF T L, PIETROSIMONE B G, et al. Neuromuscular consequences of anterior cruciate ligament injury[J]. Clin Sports Med, 2008, 27(3): 383-404.
|
[25] |
ARABADZHIEV T I, DIMITROV V G, DIMITROV G V. The increase in surface EMG could be a misleading measure of neural adaptation during the early gains in strength[J]. Eur J Appl Physiol, 2014, 114(8): 1645-1655.
doi: 10.1007/s00421-014-2893-y
pmid: 24789744
|
[26] |
ZHOU P, RYMER W Z. Factors governing the form of the relation between muscle force and the EMG: a simulation study[J]. J Neurophysiol, 2004, 92(5): 2878-2886.
pmid: 15201310
|
[27] |
TOURVILLE T W, VOIGT T B, CHOQUETTE R H, et al. Skeletal muscle cellular contractile dysfunction after anterior cruciate ligament reconstruction contributes to quadriceps weakness at 6-month follow-up[J]. J Orthop Res, 2022, 40(3): 727-737.
|
[28] |
RIEMANN B L, LEPHART S M. The sensorimotor system, part I: the physiologic basis of functional joint stability[J]. J Athl Train, 2002, 37(1): 71-79.
|
[29] |
BOUDREAU S A, FALLA D. Chronic neck pain alters muscle activation patterns to sudden movements[J]. Exp Brain Res, 2014, 232(6): 2011-2020.
doi: 10.1007/s00221-014-3891-3
pmid: 24632836
|
[30] |
HUBLEY-KOZEY C, DELUZIO K, DUNBAR M. Muscle co-activation patterns during walking in those with severe knee osteoarthritis[J]. Clin Biomech (Bristol, Avon), 2008, 23(1): 71-80.
|
[31] |
LATASH M L. Muscle coactivation: definitions, mechanisms, and functions[J]. J Neurophysiol, 2018, 120(1): 88-104.
doi: 10.1152/jn.00084.2018
pmid: 29589812
|
[32] |
BLACKBURN T, PIETROSIMONE B, GOODWIN J S, et al. Co-activation during gait following anterior cruciate ligament reconstruction[J]. Clin Biomech (Bristol, Avon), 2019, 67: 153-159.
|
[33] |
BARENIUS B, PONZER S, SHALABI A, et al. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial[J]. Am J Sports Med, 2014, 42(5): 1049-1057.
doi: 10.1177/0363546514526139
pmid: 24644301
|
[34] |
FLAXMAN T E, ALKJAER T, SIMONSEN E B, et al. Predicting the functional roles of knee joint muscles from internal joint moments[J]. Med Sci Sports Exerc, 2017, 49(3): 527-537.
|
[35] |
SHERMAN D A, GLAVIANO N R, NORTE G E. Hamstrings neuromuscular function after anterior cruciate ligament reconstruction: a systematic review and meta-analysis[J]. Sports Med, 2021, 51(8): 1751-1769.
doi: 10.1007/s40279-021-01433-w
pmid: 33609272
|
[36] |
CAMARGO P R, NEUMANN D A. Kinesiologic considerations for targeting activation of scapulothoracic muscles: part 2: trapezius[J]. Braz J Phys Ther, 2019, 23(6): 467-475.
|
[37] |
PAGE C, BACKUS S I, LENHOFF M W. Electromyographic activity in stiff and normal elbows during elbow flexion and extension[J]. J Hand Ther, 2003, 16(1): 5-11.
doi: 10.1016/s0894-1130(03)80018-2
pmid: 12611440
|
[38] |
HADDARA R, ZHOU Y, CHINCHALKAR S, et al. Postoperative healing patterns in elbow using electromyography: Towards the development of a wearable mechatronic elbow brace[J]. IEEE Int Conf Rehabil Robot, 2017, 2017: 1395-1400.
doi: 10.1109/ICORR.2017.8009443
pmid: 28814015
|