《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (1): 20-29.doi: 10.3969/j.issn.1006-9771.2023.01.004
收稿日期:
2022-10-01
修回日期:
2022-12-19
出版日期:
2023-01-25
发布日期:
2023-02-17
通讯作者:
王超(1978-),女,汉族,河北秦皇岛市人,博士,副教授,主要研究方向:身体活动与健康促进,E-mail: wangchao@cupes.edu.cn。
作者简介:
王宇(1991-),男,汉族,江苏淮安市人,硕士研究生,主要研究方向:儿童青少年身体活动与健康促进。
基金资助:
WANG Yu, HE Gang, LI Dongsheng, MA Kaiyue, WANG Chao()
Received:
2022-10-01
Revised:
2022-12-19
Published:
2023-01-25
Online:
2023-02-17
Contact:
WANG Chao, E-mail: wangchao@cupes.edu.cn
Supported by:
摘要:
目的 系统分析身体活动对儿童青少年执行功能的干预效果,并对影响干预效果的因素进行梳理。
方法 检索2010年1月1日至2021年6月30日中国知网、万方数据库、Google Scholar、Wiley Online Library、PubMed中对儿童青少年执行功能进行身体活动干预的文献,经筛选、质量评定后,进行系统综述。
结果 最终纳入21篇文献,来自11个国家,包含13项随机对照试验,涉及2 496例研究对象,年龄5~18岁,文献发表日期主要集中在2010年至2019年,物理治疗证据数据库量表平均分5.57分。身体活动类型主要包括体能、技能和运动项目三类,活动强度为低至高强度,每次8~120 min,每周1~5次,时间最长10个月。身体活动可以有效改善执行功能,主要改善抑制控制、工作记忆和认知可塑性,体现在完成认知任务的准确率提高、反应时缩短,双侧前额叶皮质活动增加等。影响干预效果的因素包括身体活动类型、活动组织形式、活动强度、单次活动持续时间、活动频率和周期、干预对象的选取、执行功能指标的选取等。
结论 身体活动可以改善儿童青少年的抑制控制、工作记忆和认知可塑性。影响干预效果的因素主要为身体活动要素、研究对象自身因素以及试验设计因素。
中图分类号:
王宇, 贺刚, 黎东升, 马恺悦, 王超. 身体活动干预儿童青少年执行功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(1): 20-29.
WANG Yu, HE Gang, LI Dongsheng, MA Kaiyue, WANG Chao. Effect of physical activity on executive function of children and adolescents: a systematic review[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(1): 20-29.
表1
纳入研究的PICO"
人群 (Population) | 干预 (Intervention) | 比较 (Comparison) | 结局 (Outcome) |
---|---|---|---|
儿童青少年 | 活动类型 | 有无干预 | b身体功能 |
年龄5~18岁 | 体能类 肌肉力量:仰卧起坐、深蹲、俯卧撑、引体向上等 肌肉耐力:长跑、游泳、自行车等 心肺耐力:健步走、慢跑等各类有氧活动 柔韧性体能:瑜伽、舞蹈等 技能类 粗大/精细技能:举、拾、推、拉、搬运、抓等 基本动作技能:走、跑、跳、投、攀、爬等 移动/转移技能:步行、移动身体、交通出行等 运动项目类 竞技类:篮球、足球、排球、乒乓球、网球、羽毛球、游泳、自行车等 休闲类:步行、瑜伽、普拉提、健身操、太极拳、跑步、飞镖、毽球、台球、保龄球、高尔夫、马术、户外活动、日常生活活动等 身体活动方案 活动方式 持续时间 活动强度 频率、周期 干预环境 | 不同干预方案设计:活动方式、时间、强度、频率、周期、干预环境 人口统计学因素:年龄、基础认知水平 试验设计因素:执行功能指标选取 | b164高水平认知功能 b1643认知可塑性 b1648其他特指的高水平认知功能 s 身体结构 s110脑的结构 |
表2
纳入文献基本特征"
研究 | 国家 | 研究对象 | 研究设计 | 干预 环境 | 干预方式 | 干预强度 | 干预时间 | 测量工具 | 干预效果 |
---|---|---|---|---|---|---|---|---|---|
Budde等[ | 德国 | 15~16岁 试验组A 18例,试验组B 20例,对照组21例 | RCT | 操场400 m跑道 | 跑步比赛vs.不干预 | 试验组A:目标心率 = (220-年龄)×(50~65)% 试验组B:目标心率 = (220-年龄) ×(70~85)% | 单次12 min | Letter Digit Span task | 试验组A (+) 试验组B (N/A) |
Fisher等[ | 英国 | 平均6.2岁 试验组33例,对照组27例 | RCT | 学校 | 有氧运动课程vs.常规体育课 | N/A | 每次60 min,每周2次,共10周 | Spatial Memory Span Spatial Working Memory | 试验组 (N/A) 对照组 (N/A) |
Davis等[ | 美国 | 7~11岁 试验组A 56例,试验组B 55例,对照组60例 | RCT | 学校 | 跑步游戏+跳绳+改良足球vs.不干预 | 平均心率150次/min | 试验组A每次20 min,共2次 试验组B每次运动20 min,久坐20 min,每周5次,共13周 | Cognitive Assessment System Planning Scale fMRI | 试验组A (+) 试验组B (+) 对照组 (N/A) |
Crova等[ | 意大利 | 9~10岁 试验组37例,对照组33例 | RCT | 学校 | 运动技能+网球专项练习vs.常规体育课程 | N/A | 每次120 min,每周1次,共21周 | Random Number Generation task | 试验组IC(+), WM(N/A) 对照组IC(N/A),WM(N/A) |
陈爱国等[ | 中国 | 11~12岁 试验组A 22例,试验组B 22例,试验组C 24例;对照组A 20例,对照组B 20例,对照组C 22例 | RCT | 学校操场 | 篮球训练vs.自由活动 | 目标心率 = (220-年龄)×(60~69)% | 单次,试验组A 8 min,试验组B 15 min,试验组C 30 min | Flanker task 1-back task More-odd shifting | 试验组A IC(N/A) 试验组B IC(+) 试验组C IC(+), WM(+), CF(+) |
江大雷等[ | 中国 | 5~6岁 试验组31例,对照组30例 | RCT | 学校 | 足球运动游戏vs.不干预 | 目标心率 = (220-年龄)×(60~70)% | 每次35 min,每周2次,共8周 | Panda-Lion task Snow-Grass task Corsi Blocks reverse Corsi Blocks test Flexible Item Selection task | 试验组IC(+),WM(N/A),CF(N/A) 对照组IC(N/A),WM(N/A),CF(N/A) |
Browne等[ | 德国 | 10~16岁 20例交叉对照 | CS | 室内运动场 | 20米往返跑 | 目标心率 = (220-年龄)×(65~75)% | 每次20 min,2次,间隔48 h | Stroop test | (+) |
Koutsandreou等[ | 德国 | 9~10岁 试验组A 27例,试验组B 23例,对照组21例 | RCT | N/A | 跑步游戏vs.运动技能练习vs..不干预 | N/A | 每次45 min,每周3次,共10周 | Letter Digit Span task | 试验组A (N/A) 试验组B (+) 对照组 (N/A) |
潘家礼等[ | 中国 | 12~13岁 试验组学习困难者23例+学习正常者23例,对照组学习困难者22例+学习正常者23例 | CCS | 学校 | 篮球训练vs.正常体育课 | 目标心率 = (220-年龄)×(60~69)% | 每次30 min,每周3次,共10周 | Flanker task 1-back task More-odd shifting | 试验组IC(+),WM(+),CF(+) 对照组IC(N/A),WM(N/A),CF(N/A) |
Tarp等[ | 丹麦 | 12~14岁 试验组194例,对照组438例 | RCT | 学校 | 课间体育干预vs.正常活动 | N/A | 每次60 min,每周5次,共20周 | Flanker task | 试验组(N/A) 对照组(N/A) |
Alesi等[ | 意大利 | 平均8.8岁 试验组24例,对照组20例 | CS | 学校 | 定向足球运动干预vs.久坐 | N/A | 每次75 min,每周2次,共6个月 | Tower of London task Forward and Backward Digit Span task | 试验组(+) 对照组(N/A) |
Moreau等[ | 英国 | 7~13岁 试验组152例,对照组153例 | RCT | N/A | 高强度间歇运动vs.不干预 | N/A | 6周 | Flanker task Backward Digit Span Backward Corsi Blocks Visual 2-back task Stroop task | 试验组 IC(+),WM(+) 对照组 IC(N/A),WM(N/A) |
Kvalo等[ | 挪威 | 10~11岁 344例 | RCT | 学校 | 体育课+体育作业vs.常规体育课 | N/A | 体育课45 min, 休息10 min,体育作业10 min,每周2次、每周5次和每周5次,共10个月 | Stroop Golden Color-work test Forward and Backward Digit Span task Trail-Making task | 试验组IC(N/A),WM(N/A),CF(N/A) 对照组IC(N/A),WM(N/A),CF(N/A) |
陈爱国等[ | 中国 | 6~14岁 试验组21例,对照组20例 | CCS | 学校 | 足球游戏+比赛vs.常规足球教学 | 目标心率 = (220-年龄)×(60~69)% | 每次40 min,每周2次,共8周 | Flanker task 1-back task More-odd shifting | 试验组 IC(+),WM(+),CF(+) 对照组IC(N/A),WM(N/A),CF(N/A) |
王瑞萌等[ | 中国 | 5~6岁 试验组32例,对照组31例 | RCT | 学校 | 跆拳道动作组合训练vs.常规体育课 | N/A | 每次45 min,每周2次,共16周 | Flanker task Picture Sequence Memory test Dimensional Change Card Sort test | 试验组IC(+),WM(N/A),CF(N/A) 对照组IC(N/A),WM(N/A),CF(N/A) |
Cooper等[ | 英国 | 11~13岁 39例交叉对照 | CS | 学校运动厅 | 篮球游戏 | 平均心率158次/min | 单次60 min | Stroop test Sternberg paradigm | (+) |
Wick等[ | 瑞士 | 10~12岁 试验组19例,对照组19例 | CS | 学校 | 课堂站立vs.常规课堂 | N/A | 每次60 min,每周5次,共11周 | Flanker task Digit Span task | 试验组IC(N/A),WM(+) 对照组IC(N/A),WM(N/A) |
van den Berg等[ | 荷兰 | 11~14岁 92例交叉对照 | CS | 学校 | 功率车 | 目标心率 = (220-年龄)×(40~60)% | 单次10 min、20 min、30 min | Attention Network test n-back task | IC(N/A)、WM(N/A) |
Tottori等[ | 日本 | 8~12岁 试验组27例,对照组29例 | CS | 学校体育馆 | 高强度间歇训练vs.不干预 | 目标心率 = (220-年龄)×85% | 每次8~10 min,每周3次,共4周 | Digit Span Forward and Backward test | 试验组(+) 对照组(N/A) |
Ludyga等[ | 瑞士 | 12~15岁 试验组20例,对照组16例 | RCT | N/A | 协调性运动+有氧运动vs.不干预 | 中等强度 | 每次20 min,每周5次,共8周 | Stroop Color Word task | (+) |
Lind等[ | 丹麦 | 11~12岁 试验组A 24例,试验组B 25例,对照组24例 | RCT | 足球场 | 3人足球赛vs.观看足球比赛视频 | 试验组A (70~100)%储备心率 试验组B (60~80)%储备心率 | 10 min×2,间歇5 min,单次 | Flanker task | 试验组A (+) 试验组B (N/A) 对照组(+) |
[1] |
BRIDGETT D J, ODDI K B, LAAKE L M, et al. Integrating and differentiating aspects of self-regulation: effortful control, executive functioning, and links to negative affectivity[J]. Emotion, 2013, 13(1): 47-63.
doi: 10.1037/a0029536 pmid: 22906086 |
[2] |
JIANG C, CHEN T. Effects of aerobic exercise on executive control and brain function[J]. Adv Psychol Sci, 2013, 21(10): 1844-1850.
doi: 10.3724/SP.J.1042.2013.01844 |
[3] |
KANG D, ZENG L. The relationship between early childhood mathematics learning and executive function[J]. Adv Psychol Sci, 2018, 26(9): 1661-1669.
doi: 10.3724/SP.J.1042.2018.01661 |
[4] | 郭强, 汪晓赞, 蒋健保. 我国儿童青少年身体活动与久坐行为模式特征的研究[J]. 体育科学, 2017, 37(7): 17-29. |
GUO Q, WANG X Z, JIANG J B. The patterns of physical activity and sedentary behavior in Chinese children and adolescents[J]. Chin Sport Sci, 2017, 37(7): 17-29. | |
[5] | 方黎明. 体育锻炼对青少年认知能力和学业成绩的影响[J]. 体育科学, 2020, 40(4): 35-41. |
FANG L M. The effect of physical exercise on adolescents' cognitive ability and academic achievements[J]. Chin Sport Sci, 2020, 40(4): 35-41. | |
[6] | 杨远都, 李佑发, 王思佳, 等. 有氧运动改善儿童执行功能研究进展[J]. 中国预防医学杂志, 2020, 21(1): 116-120. |
YANG Y D, LI Y F, WANG S J, et al. Research progress of aerobic exercise in improving children's executive function[J]. Chin Prev Med, 2020, 21(1): 116-120. | |
[7] | 龚海培, 柳鸣毅, 孔倩倩, 等. 体教融合的科学循证:体育锻炼和文化学习的相互关联[J]. 中国体育科技, 2020, 56(10): 19-28, 88. |
GONG H P, LIU M Y, KONG Q Q, et al. Scientific evidence of integration of sports and education: an analysis of association between sports exercise and education[J]. Chin Sport Sci Technol, 2020, 56(10): 19-28, 88. | |
[8] | 周成林, 金鑫虹. 从脑科学诠释体育运动提升学习效益的理论与实践[J]. 上海体育学院学报, 2021, 45(1): 20-28. |
ZHOU C L, JIN X H. Theory and practice of sports to promote learning efficiency from the perspective of brain science[J]. J Shanghai Univ Sport, 2021, 45(1): 20-28. | |
[9] | 世界卫生组织. 国际功能、残疾和健康分类(儿童和青少年版)[M]. 邱卓英, 译. 日内瓦: 世界卫生组织, 2013. |
World Health Organization. International Classification of Functioning, Disability and Health-Children and Youth Version[M]. QIU Z Y, trans trans. Geneva: World Health Organization, 2013. | |
[10] | 世界卫生组织. 健康服务体系中的康复[J]. 邱卓英,郭键勋,李伦,译. 中国康复理论与实践, 2020, 26(1): 1-14. |
World Health Organization. Rehabilitation in Health Service System[J]. QIU Z Y, KWOK J K F, LI L,trans. Chin J Rehabil Theory Pract, 2020, 26(1): 1-14. | |
[11] | 邱卓英, 李伦, 陈迪, 等. 基于世界卫生组织国际健康分类家族康复指南研究:理论架构和方法体系[J]. 中国康复理论与实践, 2020, 26(2): 125-135. |
QIU Z Y, LI L, CHEN D, et al. Research on rehabilitation guidelines using World Health Organization Family International Classifications: framework and approaches[J]. Chin J Rehabil Theory Pract, 2020, 26(2): 125-135. | |
[12] | MOHER D, LIBERATI A, TETZLAFF J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement[J]. PLoS Med, 2009, 6(7): e1000097. |
[13] | PEDro. PEDro标度[EB/OL]. (2021-05-03) [2022-09-05]. https://pedro.org.au/simplified-chinese/learn/pedro-statistics/. |
[14] |
BUDDE H, VOELCKER-REHAGE C, PIETRASSYK-KENDZIORRA S, et al. Steroid hormones in the saliva of adolescents after different exercise intensities and their influence on working memory in a school setting[J]. Psychoneuroendocrinology, 2010, 35(3): 382-391.
doi: 10.1016/j.psyneuen.2009.07.015 pmid: 19716238 |
[15] |
FISHER A, BOYLE J M, PATON J Y, et al. Effects of a physical education intervention on cognitive function in young children: randomized controlled pilot study[J]. BMC Pediatr, 2011, 11: 97.
doi: 10.1186/1471-2431-11-97 pmid: 22034850 |
[16] |
DAVIS C L, TOMPOROWSKI P D, MCDOWELL J E, et al. Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial[J]. Health Psychol, 2011, 30(1): 91-98.
doi: 10.1037/a0021766 pmid: 21299297 |
[17] |
CROVA C, STRUZZOLINO I, MARCHETTI R, et al. Cognitively challenging physical activity benefits executive function in overweight children[J]. J Sports Sci, 2014, 32(3): 201-211.
doi: 10.1080/02640414.2013.828849 |
[18] | 陈爱国, 冯磊, 朱丽娜, 等. 不同持续时间的中等强度篮球运动对儿童执行功能的影响[J]. 首都体育学院学报, 2015, 27(3): 223-227. |
CHEN A G, FENG L, ZHU L N, et al. Effects of medium-intensity basketball dribbling training of different durations on children's executive function[J]. J Capital Univ Phys Educ Sports, 2015, 27(3): 223-227. | |
[19] | 江大雷, 曾从周. 8周中等强度足球运动游戏对学龄前儿童执行功能发展的影响[J]. 中国体育科技, 2015, 51(2): 43-50. |
JIANG D L, ZENG C Z. The effect of 8-week soccer exercise with medium intensity on executive function in preschool children[J]. Chin Sport Sci Technol, 2015, 51(2): 43-50. | |
[20] |
BROWNE R A V, COSTA E C, SALES M M, et al. Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents[J]. Rev Paul Pediatr, 2016, 34(2): 154-161.
doi: 10.1016/j.rpped.2015.08.004 |
[21] |
KOUTSANDREOU F, WEGNER M, NIEMANN C, et al. Effects of motor versus cardiovascular exercise training on children's working memory[J]. Med Sci Sports Exerc, 2016, 48(6): 1144-1152.
doi: 10.1249/MSS.0000000000000869 |
[22] | 潘家礼, 殷恒婵, 陈爱国, 等. 运动干预对学习困难、正常小学生执行功能影响的实验研究[J]. 体育科学, 2016, 36(6): 84-91, 7. |
PAN J L, YIN H C, CHEN A G, et al. An experimental study on the effect of exercise intervention on the executive functions of primary students with and without learning difficulties[J]. Chin Sport Sci, 2016, 36(6): 84-91, 7. | |
[23] | TARP J, DOMAZET S L, FROBERG K, et al. Effectiveness of a school-based physical activity intervention on cognitive performance in Danish adolescents: LCoMotion-Learning, Cognition and Motion: a cluster randomized controlled trial[J]. PLoS One, 2016, 11(6): e0158087. |
[24] |
ALESI M, BIANCO A, LUPPINA G, et al. Improving children's coordinative skills and executive functions: the effects of a football exercise program[J]. Percept Mot Skills, 2016, 122(1): 27-46.
doi: 10.1177/0031512515627527 |
[25] | MOREAU D, KIRK I J, WALDIE K E. High-intensity training enhances executive function in children in a randomized, placebo-controlled trial[J]. Elife, 2017, 6: e25062. |
[26] |
KVALO S E, BRU E, BRONNICK K, et al. Does increased physical activity in school affect children's executive function and aerobic fitness?[J]. Scand J Med Sci Sports, 2017, 27(12): 1833-1841.
doi: 10.1111/sms.12856 |
[27] | 陈爱国, 陈丽萍, 颜军. 8周足球运动改善留守儿童执行功能的实验研究[J]. 山东体育学院学报, 2017, 33(1): 85-89. |
CHEN A G, CHEN L P, YAN J. Exepeimental study on the effect of eight-week football program on executive function among left-behind children[J]. J Shandong Sport Univ, 2017, 33(1): 85-89. | |
[28] | 王瑞萌, 庞鑫, 李未名, 等. 跆拳道训练对学龄前儿童执行功能发展的影响[J]. 体育学刊, 2018, 25(5): 119-125. |
WANG R M, PANG X, LI W M, et al. Effects of taekwondo training on preschool children's executive function development[J]. J Phys Educ, 2018, 25(5): 119-125. | |
[29] |
COOPER S B, DRING K J, MORRIS J G, et al. High intensity intermittent games-based activity and adolescents' cognition: moderating effect of physical fitness[J]. BMC Public Health, 2018, 18(1): 603.
doi: 10.1186/s12889-018-5514-6 pmid: 29739386 |
[30] |
WICK K, FAUDE O, MANES S, et al. I can stand learning: a controlled pilot intervention study on the effects of increased standing time on cognitive function in primary school children[J]. Int J Environ Res Public Health, 2018, 15(2): 356.
doi: 10.3390/ijerph15020356 |
[31] |
VAN DEN BERG V, SALIASI E, JOLLES J, et al. Exercise of varying durations: no acute effects on cognitive performance in adolescents[J]. Front Neurosci, 2018, 12: 672.
doi: 10.3389/fnins.2018.00672 |
[32] |
TOTTORI N, MORITA N, UETA K, et al. Effects of high intensity interval training on executive function in children aged 8-12 years[J]. Int J Environ Res Public Health, 2019, 16(21): 4127.
doi: 10.3390/ijerph16214127 |
[33] |
LUDYGA S, KOCHLI S, PUHSE U, et al. Effects of a school-based physical activity program on retinal microcirculation and cognitive function in adolescents[J]. J Sci Med Sport, 2019, 22(6): 672-676.
doi: S1440-2440(18)30870-3 pmid: 30553766 |
[34] |
LIND R R, BECK M M, WIKMAN J, et al. Acute high-intensity football games can improve children's inhibitory control and neurophysiological measures of attention[J]. Scand J Med Sci Sports, 2019, 29(10): 1546-1562.
doi: 10.1111/sms.13485 |
[35] |
VOSS M W, VIVAR C, KRAMER A F, et al. Bridging animal and human models of exercise-induced brain plasticity[J]. Trends Cogn Sci, 2013, 17(10): 525-544.
doi: 10.1016/j.tics.2013.08.001 pmid: 24029446 |
[36] |
VAN PRAAG H. Neurogenesis and exercise: past and future directions[J]. Neuromolecular Med, 2008, 10(2): 128-140.
doi: 10.1007/s12017-008-8028-z |
[37] |
BELANGER M, ALLAMAN I, MAGISTRETTI P J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation[J]. Cell Metab, 2011, 14(6): 724-738.
doi: 10.1016/j.cmet.2011.08.016 pmid: 22152301 |
[38] |
THOMAS A G, DENNIS A, BANDETTINI P A, et al. The effects of aerobic activity on brain structure[J]. Front Psychol, 2012, 3: 86.
doi: 10.3389/fpsyg.2012.00086 pmid: 22470361 |
[39] |
GIBON J, BARKER P A. Neurotrophins and proneurotrophins: focus on synaptic activity and plasticity in the brain[J]. Neuroscientist, 2017, 23(6): 587-604.
doi: 10.1177/1073858417697037 pmid: 28303740 |
[40] |
GUSTAFSSON T. Vascular remodelling in human skeletal muscle[J]. Biochem Soc Trans, 2011, 39(6): 1628-1632.
doi: 10.1042/BST20110720 |
[41] |
PEDERSEN B K. Physical activity and muscle-brain crosstalk[J]. Nat Rev Endocrinol, 2019, 15(7): 383-392.
doi: 10.1038/s41574-019-0174-x pmid: 30837717 |
[42] |
HASHIMOTO T, TSUKAMOTO H, ANDO S, et al. Effect of exercise on brain health: the potential role of lactate as a myokine[J]. Metabolites, 2021, 11(12): 813.
doi: 10.3390/metabo11120813 |
[43] |
KIM J J, DIAMOND D M. The stressed hippocampus, synaptic plasticity and lost memories[J]. Nat Rev Neurosci, 2002, 3(6): 453-462.
doi: 10.1038/nrn849 pmid: 12042880 |
[44] |
CHADDOCK L, ERICKSON K I, PRAKASH R S, et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children[J]. Brain Res, 2010, 1358: 172-183.
doi: 10.1016/j.brainres.2010.08.049 pmid: 20735996 |
[45] | 蔡春先, 张运亮. 运动改善大脑执行功能机制的研究进展[J]. 成都体育学院学报, 2019, 45(6): 120-126. |
CAI C X, ZHANG Y L. Research progress on the mechanism of exercise improving brain executive function[J]. J Chengdu Sport Univ, 2019, 45(6): 120-126. | |
[46] |
FLOEL A, RUSCHEWEYH R, KRUGER K, et al. Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link?[J]. Neuroimage, 2010, 49(3): 2756-2763.
doi: 10.1016/j.neuroimage.2009.10.043 pmid: 19853041 |
[47] | MEHTA R K, SHORTZ A E, BENDEN M E. Standing up for learning: a pilot investigation on the neurocognitive benefits of stand-biased school desks[J]. Int J Environ Res Public Health, 2015, 13(1): ijerph13010059. |
[48] | 李琳, 崔洁, 项琪, 等. 8周不同类型的运动对女大学生执行功能的影响[J]. 中国运动医学杂志, 2020, 39(10): 810-816. |
LI L, CUI J, XIANG Q, et al. The effect of eight weeks of different types of exercise on executive function of female college students[J]. Chin J Sports Med, 2020, 39(10): 810-816. | |
[49] |
PEDERSEN B K, FEBBRAIO M A. Muscles, exercise and obesity: skeletal muscle as a secretory organ[J]. Nat Rev Endocrinol, 2012, 8(8): 457-465.
doi: 10.1038/nrendo.2012.49 pmid: 22473333 |
[50] | DIAMOND A. Effects of physical exercise on executive functions: going beyond simply moving to moving with thought[J]. Ann Sports Med Res, 2015, 2(1): 1011. |
[51] | BENZING V, HEINKS T, EGGENBERGER N, et al. Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents[J]. PLoS One, 2016, 11(12): e0167501. |
[52] | WEN X, ZHANG Y, GAO Z, et al. Effect of mini-trampoline physical activity on executive functions in preschool children[J]. Biomed Res Int, 2018, 2018: 2712803. |
[53] |
ERICKSON K I, HILLMAN C, STILLMAN C M, et al. Physical activity, cognition, and brain outcomes: a review of the 2018 Physical Activity Guidelines[J]. Med Sci Sports Exerc, 2019, 51(6): 1242-1251.
doi: 10.1249/MSS.0000000000001936 |
[1] | 宋以玲, 任园春, 朱飞龙, 匡冬青, 曹庆久, 林杨, 王芳. 注意缺陷多动障碍儿童粗大动作技能与执行功能发展的特点及关系[J]. 《中国康复理论与实践》, 2024, 30(1): 1-9. |
[2] | 罗丽华, 王雨生, 李剑锋, 董继革. 术后早期综合康复对儿童青少年肱骨髁上骨折伴尺神经损伤的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 105-110. |
[3] | 郝传萍. 教育情境下辅助技术应用:政策架构与核心领域[J]. 《中国康复理论与实践》, 2024, 30(1): 119-124. |
[4] | 孙莹, 张强, 章鑫鑫, 王若晨. 视力障碍青少年心理韧性特点的质性研究[J]. 《中国康复理论与实践》, 2024, 30(1): 29-35. |
[5] | 王航宇, 葛可可, 范永红, 都丽露, 邹敏, 封磊. 基于ICD-11和ICF主动式音乐疗法改善认知障碍老年人认知功能的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 36-43. |
[6] | 闻嘉宁, 金秋艳, 张琦, 李杰, 司琦. 认知参与型身体活动对发展儿童青少年执行功能的效果:基于ICF的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 44-53. |
[7] | 葛可可, 范永红, 王航宇, 都丽露, 李长江, 邹敏. 失眠老年人正念干预健康效益的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 54-60. |
[8] | 张婧雅, 邹敏, 孙宏伟, 孙昌隆, 朱峻同. 听障儿童青少年焦虑或抑郁情绪心理干预效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1004-1011. |
[9] | 王俊宇, 杨永, 袁逊, 谢婷, 庄洁. 高强度间歇训练对健康儿童青少年执行功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1012-1020. |
[10] | 魏晓微, 杨剑, 魏春艳. 特殊教育学校孤独症谱系障碍儿童参与适应性瑜伽活动的心理与行为效益的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1021-1028. |
[11] | 毕小羽, 朱笑彤, 朱飞龙, 匡冬青, 宋以玲, 范碧瑶, 任园春. 注意缺陷多动障碍学龄儿童精细动作技能的性别差异[J]. 《中国康复理论与实践》, 2023, 29(9): 1029-1034. |
[12] | 杨亚茹, 杨剑. 基于WHO-HPS架构学校身体活动相关健康服务及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1040-1047. |
[13] | 史佳伟, 李凌宇, 杨浩杰, 王琴潞, 邹海欧. 预康复对全膝关节置换术后患者的有效性:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1057-1064. |
[14] | 赵盼超, 纪仲秋, 姜桂萍, 文蕊香. 不同任务干扰对儿童早期步态特征和任务成本的影响[J]. 《中国康复理论与实践》, 2023, 29(9): 1072-1082. |
[15] | 王少璞, 杨亚茹, 邱卓英, 杨剑, 姚梅林, 孙宏伟, 邹敏. 智力与发展性残疾儿童心理健康服务:基于WHO-FICs的研究[J]. 《中国康复理论与实践》, 2023, 29(9): 993-1003. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|