《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (1): 71-76.doi: 10.3969/j.issn.1006-9771.2023.01.010
收稿日期:
2022-07-08
修回日期:
2022-11-02
出版日期:
2023-01-25
发布日期:
2023-02-17
通讯作者:
李哲(1974-),男,博士,主任医师,主要研究方向:神经康复,E-mail: Lizhe.1974@163.com。
作者简介:
刘明月(1994-),男,汉族,河南周口市人,硕士研究生,主要研究方向:脑机接口技术。
基金资助:
LIU Mingyue, LI Zhe(), CAO Yongsheng, HAO Daojian, SONG Xueyi
Received:
2022-07-08
Revised:
2022-11-02
Published:
2023-01-25
Online:
2023-02-17
Contact:
LI Zhe, E-mail: Lizhe.1974@163.com
Supported by:
摘要:
目的 观察并探讨基于运动表象的脑机接口(BCI)训练对亚急性期脑卒中偏瘫患者手功能康复的疗效。
方法 2020年6月至2021年12月,郑州大学第五附属医院康复医学科亚急性期脑卒中偏瘫患者40例随机数字表法分为对照组(n = 20)和试验组(n = 20)。两组均予药物治疗和常规综合康复,对照组采用手部康复机器人训练,试验组采用基于运动表象的BCI训练,共4周。治疗前后,采用Fugl-Meyer评定量表上肢部分(FMA-UE)、改良Barthel指数、改良Ashworth量表进行评定,表面肌电图检测患侧指浅屈肌、指伸肌和拇短展肌在最大等长收缩状态下的积分肌电值(iEMG)。
结果 对照组脱落2例,试验组脱落1例。治疗后,两组各项指标均改善(t > 2.322, Z > 2.631, P < 0.05);除FMA-UE腕评分外,其他指标试验组优于对照组(t > 2.227, Z > 2.078, P < 0.05)。
结论 基于运动表象的BCI训练能有效改善亚急性期脑卒中偏瘫患者的手功能和日常生活活动能力。
中图分类号:
刘明月, 李哲, 曹永生, 郝道剑, 宋薛艺. 基于运动表象的脑机接口训练对亚急性期脑卒中患者手功能康复的效果[J]. 《中国康复理论与实践》, 2023, 29(1): 71-76.
LIU Mingyue, LI Zhe, CAO Yongsheng, HAO Daojian, SONG Xueyi. Effect of brain-computer interface training based on motor imagery on hand function for subacute stroke patients[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(1): 71-76.
[1] |
STINEAR C M, LANG C E, ZEILER S, et al. Advances and challenges in stroke rehabilitation[J]. Lancet Neurol, 2020, 19(4): 348-360.
doi: S1474-4422(19)30415-6 pmid: 32004440 |
[2] |
WU S, WU B, LIU M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405.
doi: S1474-4422(18)30500-3 pmid: 30878104 |
[3] |
BEEBE J A, LANG C E. Active range of motion predicts upper extremity function 3 months after stroke[J]. Stroke, 2009, 40(5): 1772-1779.
doi: 10.1161/STROKEAHA.108.536763 pmid: 19265051 |
[4] |
NAKAYAMA H, JØRGENSEN H S, RAASCHOU H O, et al. Recovery of upper extremity function in stroke patients: the Copenhagen stroke study[J]. Arch Phys Med Rehabil, 1994, 75(4): 394-398.
doi: 10.1016/0003-9993(94)90161-9 |
[5] |
GAO X, WANG Y, CHEN X, et al. Interface, interaction, and intelligence in generalized brain-computer interfaces[J]. Trends Cogn Sci, 2021, 25(8): 671-684.
doi: 10.1016/j.tics.2021.04.003 pmid: 34116918 |
[6] | 陈树耿, 贾杰. 脑机接口在脑卒中手功能康复中的应用进展[J]. 中国康复理论与实践, 2017, 23(1): 23-26. |
CHEN S G, JIA J. Progress in the application of brain-computer interface in hand function rehabilitation after stroke[J]. Chin J Rehabil Theory Pract, 2017, 23(1): 23-26. | |
[7] | 刘霞, 张萍, 李云杰, 等. 基于MI的脑机接口技术运用于脑卒中瘫痪患者脑功能激活和神经网络重塑的研究进展[J]. 中华神经科杂志, 2021, 54(10): 1089-1093. |
LIU X, ZHANG P, LI Y J, et al. Research progress of brain-computer interface technology based on motor imagery in brain function activation and neural network remodeling in stroke patients with paralysis[J]. Chin J Neurol, 2021, 54(10): 1089-1093. | |
[8] |
BAI Z, FONG K, ZHANG J J, et al. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis[J]. J Neuroeng Rehabil, 2020, 17(1): 57.
doi: 10.1186/s12984-020-00686-2 pmid: 32334608 |
[9] |
ANG K K, CHUA K S G, PHUA K S, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke[J]. Clin EEG Neurosci, 2015, 46(4): 310-320.
doi: 10.1177/1550059414522229 pmid: 24756025 |
[10] |
RAMOS-MURGUIALDAY A, BROETZ D, REA M, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study[J]. Ann Neurol, 2013, 74(1): 100-108.
doi: 10.1002/ana.23879 |
[11] |
BUCH E, WEBER C, COHEN L G, et al. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke[J]. Stroke, 2008, 39(3): 910-917.
doi: 10.1161/STROKEAHA.107.505313 pmid: 18258825 |
[12] |
KWAKKEL G, VAN PEPPEN R, WAGENAAR R C, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis[J]. Stroke, 2004, 35(11): 2529-2539.
doi: 10.1161/01.STR.0000143153.76460.7d pmid: 15472114 |
[13] |
LI M, LIU Y, WU Y, et al. Neurophysiological substrates of stroke patients with motor imagery based brain-computer interface training[J]. Int J Neurosci, 2013, 124(6): 403-415.
doi: 10.3109/00207454.2013.850082 |
[14] | 吴琼, 任诗媛, 乐赞, 等. 脑机接口综合康复训练对亚急性期脑卒中疗效的静息态功能磁共振研究[J]. 中国康复理论与实践, 2020, 26(1): 77-84. |
WU Q, REN S Y, YUE Z, et al. A resting-state functional magnetic resonance study of the efficacy of comprehensive brain-computer interface rehabilitation training on the efficacy of subacute stage stroke[J]. Chin J Rehabil Theory Pract, 2020, 26(1): 77-84. | |
[15] | 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715. |
Chinese Society of Neurology, Chinese Stroke Society. Diagnostic criteria of cerebrovascular diseases in China (version 2019)[J]. Chin J Neurol, 2019, 52(9): 710-715. | |
[16] |
NISHIMOTO A, KAWAKAMI M, FUJIWARA T, et al. Feasibility of task-specific brain-machine interface training for upper-extremity paralysis in patients with chronic hemiparetic stroke[J]. J Rehabil Med, 2018, 50(1): 52-58.
doi: 10.2340/16501977-2275 pmid: 28949370 |
[17] |
VIDAURRE C, BLANKERTZ B. Towards a cure for BCI illiteracy[J]. Brain Topogr, 2010, 23(2): 194-198.
doi: 10.1007/s10548-009-0121-6 pmid: 19946737 |
[18] | 梁嘉欣, 何龙龙, 黄国志, 等. 计算机运动反馈训练对脑卒中患者手功能康复的疗效观察[J]. 中国康复医学杂志, 2019, 34(4): 427-432. |
LIANG J X, HE L L, HUANG G Z, et al. Efficacy of computerized motor feedback training on hand function rehabilitation in stroke patients[J]. Chin J Rehabil Med, 2019, 34(4): 427-432. | |
[19] |
WINTERS C, VAN WEGEN E E H, DAFFERTSHOFER A, et al. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke[J]. Neurorehabil Neural Repair, 2015, 29(7): 614-622.
doi: 10.1177/1545968314562115 pmid: 25505223 |
[20] |
LEUNG S O C, CHAN C C H, SHAH S. Development of a Chinese version of the modified Barthel index: validity and reliability[J]. Clin Rehabil, 2007, 21(10): 912-922.
doi: 10.1177/0269215507077286 |
[21] |
PANDYAN A D, JOHNSON G R, PRICE C I, et al. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity[J]. Clin Rehabil, 1999, 13(5): 373-383.
doi: 10.1191/026921599677595404 pmid: 10498344 |
[22] |
HOOZEMANS M J M, VAN DIEËN J H. Prediction of handgrip forces using surface EMG of forearm muscles[J]. J Electromyogr Kinesiol, 2005, 15(4): 358-366.
doi: 10.1016/j.jelekin.2004.09.001 |
[23] |
SEKINE M, TAMURA T, YOSHIDA M, et al. A gait abnormality measure based on root mean square of trunk acceleration[J]. J Neuroeng Rehabil, 2013, 10: 118.
doi: 10.1186/1743-0003-10-118 pmid: 24370075 |
[24] |
FROLOV A A, MOKIENKO O, LYUKMANOV R, et al. Post stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial[J]. Front Neurosci, 2017, 11: 400.
doi: 10.3389/fnins.2017.00400 |
[25] |
HUMMEL F C, COHEN L G. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?[J]. Lancet Neurol, 2006, 5(8): 708-712.
doi: 10.1016/S1474-4422(06)70525-7 pmid: 16857577 |
[26] |
DE VICO F F, PICHIORRI F, MORONE G, et al. Multiscale topological properties of functional brain networks during motor imagery after stroke[J]. Neuroimage, 2013, 83: 438-449.
doi: 10.1016/j.neuroimage.2013.06.039 pmid: 23791916 |
[27] |
VALERO-CABRÉ A, AMENGUAL J L, STENGEL C, et al. Transcranial magnetic stimulation in basic and clinical neuroscience: a comprehensive review of fundamental principles and novel insights[J]. Neurosci Biobehav Rev, 2017, 83: 381-404.
doi: 10.1016/j.neubiorev.2017.10.006 |
[28] | MADHOUN H Y, TAN B, FENG Y, et al. Task-based mirror therapy enhances the upper limb motor function in subacute stroke patients: a randomized control trial[J]. Eur J Phys Rehabil Med, 2020, 56(3): 265-271. |
[29] |
LI L M, UEHARA K, HANAKAWA T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies[J]. Front Cell Neurosci, 2015, 9: 181.
doi: 10.3389/fncel.2015.00181 pmid: 26029052 |
[30] | 李芳, 安丙辰, 郑洁皎. 表面肌电图在脑卒中患者手神经肌肉功能评定中的应用[J]. 中国康复理论与实践, 2015, 21(3): 280-283. |
LI F, AN B C, ZHENG J J. Application of surface electromyography in the assessment of hand neuromuscular function in stroke patients[J]. Chin J Rehabil Theory Pract, 2015, 21(3): 280-283. | |
[31] | MUNOZ-NOVOA M, KRISTOFFERSEN M B, SUNNERHAGEN K S, et al. Upper limb stroke rehabilitation using surface electromyography: a systematic review and meta-analysis[J]. Front Hum Neurosci, 2022, 16: 697870. |
[32] | 李贞晶, 孟宪忠, 瞿昱, 等. 双侧手功能训练对卒中患者手功能及手屈伸肌群表面肌电的影响[J]. 中华物理医学与康复杂志, 2019, 41(8): 584-587. |
LI Z J, MENG X Z, QU Y, et al. Effects of bilateral hand function training on hand function and surface electromyography of hand flexor and extensor muscle groups in stroke patients[J]. Chin J Phys Med Rehabil, 2019, 41(8): 584-587. | |
[33] | 刘远文, 付桢, 姜荣荣, 等. 康复机器手辅助下任务导向训练对脑卒中手功能的效果[J]. 中国康复理论与实践, 2017, 23(3): 338-344. |
LIU Y W, FU Z, JIANG R R, et al. Effectiveness of rehabilitation robotic-assisted task-oriented training on hand function in stroke[J]. Chin J Rehabil Theory Pract, 2017, 23(3): 338-344. | |
[34] |
BIASIUCCI A, LEEB R, ITURRATE I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J]. Nat Commun, 2018, 9(1): 2421.
doi: 10.1038/s41467-018-04673-z pmid: 29925890 |
[35] | SUN X, LI M, LI Q, et al. Poststroke cognitive impairment research progress on application of brain-computer interface[J]. Biomed Res Int, 2022, 2022: 9935192. |
[36] |
BANIQUED P D E, STANYER E C, AWAIS M, et al. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review[J]. J Neuroeng Rehabil, 2021, 18(1): 15.
doi: 10.1186/s12984-021-00820-8 pmid: 33485365 |
[37] |
MRACHACZ-KERSTING N, JIANG N, STEVENSON A J T, et al. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface[J]. J Neurophysiol, 2016, 115(3): 1410-1421.
doi: 10.1152/jn.00918.2015 |
[38] |
REMSIK A B, WILLIAMS L, GJINI K, et al. Ipsilesional mu rhythm desynchronization and changes in motor behavior following post stroke BCI intervention for motor rehabilitation[J]. Front Neurosci, 2019, 13: 53.
doi: 10.3389/fnins.2019.00053 |
[1] | 林娜, 高菡璐, 卢惠苹, 陈燕清, 郑军凡, 陈述荣. 虚拟现实技术对脑卒中上肢功能影响的弥散张量成像研究[J]. 《中国康复理论与实践》, 2024, 30(1): 61-67. |
[2] | 王昊懿, 史亚伟, 鲁俊, 许光旭. 主观垂直感知障碍对脑卒中患者功能影响的回顾性研究[J]. 《中国康复理论与实践》, 2024, 30(1): 68-73. |
[3] | 陈珺雯, 陈谦, 陈程, 李淑月, 刘玲玲, 吴存书, 龚翔, 鲁俊, 许光旭. 改良八段锦身体活动对脑卒中患者心肺功能、运动功能和日常生活活动能力的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 74-80. |
[4] | 胡永林, 马颖, 窦超, 陆安民, 江小鸽, 宋新建, 肖玉华. 肩部控制训练联合神经松动术对脑卒中偏瘫患者肩痛及上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 81-86. |
[5] | 王贺, 韩靓, 阚梦凡, 于少泓. 电刺激治疗脑卒中后肩手综合征有效性的系统评价与Meta分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1048-1056. |
[6] | 孙藤方, 任梦婷, 杨琳, 王耀霆, 王红雨, 闫兴洲. 高压氧治疗联合重复外周磁刺激干预脑卒中患者踝运动功能和平衡能力的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 875-881. |
[7] | 王亚楠, 刘西花. 脑卒中偏瘫患者主观和客观平衡功能测量的相关性及预测效能[J]. 《中国康复理论与实践》, 2023, 29(8): 890-895. |
[8] | 王海云, 王寅, 周信杰, 何爱群. 基于“中枢-外周-中枢”理论的经颅直流电刺激结合针刺干预脑卒中患者中枢及上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 919-925. |
[9] | 陈怡婷, 王倩, 崔慎红, 李映彩, 张思鈺, 魏衍旭, 任慧, 冷军, 陈斌. 双侧序贯重复经颅磁刺激干预脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 926-932. |
[10] | 李振亚, 孙洁, 郭鹏飞, 王光明. 脑卒中患者口期和咽期吞咽功能改变与误吸的相关性:基于电视透视吞咽检查[J]. 《中国康复理论与实践》, 2023, 29(8): 933-939. |
[11] | 李子怡, 宋为群, 杜巨豹, 曹光磊, 张艳明, 李冉. 运动表象训练对膝关节单髁置换术后膝关节功能的效果[J]. 《中国康复理论与实践》, 2023, 29(7): 745-749. |
[12] | 华玲, 张一楠, 郑玉, 孙俏仪, 房辉, 宋达. 手控节律音乐治疗对脑卒中后单侧空间忽略的效果[J]. 《中国康复理论与实践》, 2023, 29(7): 833-838. |
[13] | 蒋孝翠, 刘臻, 苏清伦, 赵秦, 夏晓昧, 陆飞. 间歇性Theta节律经颅磁刺激对脑卒中后非流利性失语的影响[J]. 《中国康复理论与实践》, 2023, 29(7): 839-843. |
[14] | 许苗苗, 李楠, 应颖, 杨凯翔, 杨婧瑞, 李杰, 邱彦群. 重复外周磁刺激对左右颈7神经交叉移位术后脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(6): 686-690. |
[15] | 郑莉, 鲍治诚, 张琪, 任绪艳, 苏敏. 经皮耳迷走神经电刺激结合康复机器人训练对脑卒中患者上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(6): 691-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|