[1] |
王艳, 吴珊红, 宫子涵. 下肢外骨骼机器人系统改善脑卒中患者步行功能研究进展[J]. 中国现代神经疾病杂志, 2023, 23(1): 22-28.
|
|
WANG Y, WU S H, GONG Z H. Advances on lower limb exoskeleton robotic systems to improve walking function of stroke patients[J]. Chin J Contemp Neurol Neurosurg, 2023, 23(1): 22-28.
|
[2] |
KIM S J, LEE H J, HWANG S W, et al. Clinical characteristics of proper robot-assisted gait training group in non-ambulatory subacute stroke patients[J]. Ann Rehabil Med, 2016, 40(2): 183-189.
doi: 10.5535/arm.2016.40.2.183
pmid: 27152266
|
[3] |
VEERBEEK J M, VAN WEGEN E, VAN PEPPEN R, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis[J]. PLoS One, 2014, 9(2): e87987.
doi: 10.1371/journal.pone.0087987
|
[4] |
INFARINATO F, ROMANO P, GOFFREDO M, et al. Functional gait recovery after a combination of conventional therapy and overground robot-assisted gait training is not associated with significant changes in muscle activation pattern: an EMG preliminary study on subjects subacute post stroke[J]. Brain Sciences, 2021, 11(4): 448.
doi: 10.3390/brainsci11040448
|
[5] |
XING Y, BAI Y. A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms[J]. Mol Neurobiol, 2020, 57(10): 4218-4231.
doi: 10.1007/s12035-020-02021-1
pmid: 32691303
|
[6] |
CALABRÒ R S, CACCIOLA A, BERTÈ F, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?[J]. Neurol Sci, 2016, 37(4): 503-514.
doi: 10.1007/s10072-016-2474-4
pmid: 26781943
|
[7] |
BERGMANN J, KREWER C, BAUER P, et al. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial[J]. Eur J Phys Rehabil Med, 2018, 54(3): 397-407.
|
[8] |
TANAKA H, NANKAKU M, NISHIKAWA T, et al. A follow-up study of the effect of training using the hybrid assistive limb on gait ability in chronic stroke patients[J]. Top Stroke Rehabil, 2019, 26(7): 491-496.
doi: 10.1080/10749357.2019.1640001
pmid: 31318323
|
[9] |
CIRSTEA C M. Are wearable robots effective for gait recovery after stroke?[J]. Stroke, 2019, 50(12): 3337-3338.
doi: 10.1161/STROKEAHA.119.026548
pmid: 31623546
|
[10] |
GOFFREDO M, GUANZIROLI E, POURNAJAF S, et al. Overground wearable powered exoskeleton for gait training in subacute stroke subjects: clinical and gait assessments[J]. Eur J Phys Rehabil Med, 2019, 55(6): 710-721.
|
[11] |
ZHANG X, YUE Z, WANG J. Robotics in lower-limb rehabilitation after stroke[J]. Behav Neurol, 2017, 2017: 3731802.
|
[12] |
MOUCHEBOEUF G, GRIFFIER R, GASQ D, et al. Effects of robotic gait training after stroke: a meta-analysis[J]. Ann Phys Rehabil Med, 2020, 63(6): 518-534.
doi: 10.1016/j.rehab.2020.02.008
pmid: 32229177
|
[13] |
MORONE G, PAOLUCCI S, CHERUBINI A, et al. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics[J]. Neuropsychiatr Dis Treat, 2017, 13: 1303-1311.
doi: 10.2147/NDT
|
[14] |
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019[J]. 中华神经科杂志, 2019, 52(9): 710-715.
|
|
Chinese Society of Neurology, Chinese Society of Stroke. Main diagnostic points of cerebrovascular diseases in China 2019[J]. Chin J Neurol, 2019, 52(9): 710-715.
|
[15] |
YEUNG L F, LAU C C Y, LAI C W K, et al. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: a randomized controlled trial[J]. J Neuroeng Rehabil, 2021, 18(1): 19.
doi: 10.1186/s12984-021-00814-6
|
[16] |
JAYARAMAN A, O'BRIEN M K, MADHAVAN S, et al. Stride management assist exoskeleton vs functional gait training in stroke: a randomized trial[J]. Neurology, 2019, 92(3): e263-e273.
doi: 10.1212/WNL.0000000000006782
|
[17] |
SONG K J, CHUN M H, LEE J, et al. The effect of robot-assisted gait training on cortical activation in stroke patients: a functional near-infrared spectroscopy study[J]. NeuroRehabilitation, 2021, 49(1): 65-73.
doi: 10.3233/NRE-210034
pmid: 33998555
|
[18] |
张晶晶, 李艳. 脑卒中偏瘫步态特点及康复策略[J]. 中国老年学杂志, 2019, 39(5): 1044-1047.
|
|
ZHANG J J, LI Y. Gait characteristics and rehabilitation strategies of hemiplegia after stroke[J]. Chin J Gerontol, 2019, 39 (5): 1044-1047.
|
[19] |
李宏伟, 张韬, 冯垚娟, 等. 外骨骼下肢康复机器人在脑卒中康复中的应用进展[J]. 中国康复理论与实践, 2017, 23(7): 788-791.
doi: 10.3969/j.issn.1006-9771.2017.07.010·
|
|
LI H W, ZHANG T, FENG Y J, et al. Application of exoskeleton-based lower limb rehabilitation robot in stroke rehabilitation (review)[J]. Chin J Rehabil Theory Pract, 2017, 23(7): 788-791.
|
[20] |
RODRÍGUEZ-FERNÁNDEZ A, LOBO-PRAT J, FONT-LLAGUNES J M. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments[J]. J Neuroeng Rehabil, 2021, 18(1): 22.
doi: 10.1186/s12984-021-00815-5
|
[21] |
MOLTENI F, GASPERINI G, GAFFURI M, et al. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results[J]. Eur J Phys Rehabil Med, 2017, 53(5): 676-684.
|
[22] |
王寒明, 杨傲然, 王欢, 等. 机器人辅助步态训练联合综合康复训练对脑卒中患者步态及生活质量的影响[J]. 中国实用神经疾病杂志, 2021, 24(20): 1793-1801.
|
|
WANG H M, YANG A R, WANG H, et al. Effect of robot-assisted gait training combined with comprehensive rehabilitation training on gait and quality of life of stroke patients[J]. Chin J Pract Nerv Dis, 2021, 24(20): 1793-1801.
|
[23] |
LI D X, ZHA F B, LONG J J, et al. Effect of robot assisted gait training on motor and walking function in patients with subacute stroke: a random controlled study[J]. J Stroke Cerebrovasc Dis, 2021, 30(7): 105807.
doi: 10.1016/j.jstrokecerebrovasdis.2021.105807
|
[24] |
KIM J, KIM D Y, CHUN M H, et al. Effects of robot-(Morning Walk®) assisted gait training for patients after stroke: a randomized controlled trial[J]. Clin Rehabil, 2019, 33(3): 516-523.
doi: 10.1177/0269215518806563
|
[25] |
ROJEK A, MIKA A, OLEKSY Ł, et al. Effects of exoskeleton gait training on balance, load distribution, and functional status in stroke: a randomized controlled trial[J]. Front Neurol, 2019, 10: 1344.
doi: 10.3389/fneur.2019.01344
pmid: 32010039
|
[26] |
BAE Y H, LEE S M, KO M. Comparison of the effects on dynamic balance and aerobic capacity between objective and subjective methods of high-intensity robot-assisted gait training in chronic stroke patients: a randomized controlled trial[J]. Top Stroke Rehabil, 2017, 24(4): 309-313.
doi: 10.1080/10749357.2016.1275304
|
[27] |
TILSON J K, SULLIVAN K J, CEN S Y, et al. Meaningful gait speed improvement during the first 60 days poststroke: minimal clinically important difference[J]. Phys Ther, 2010, 90(2): 196-208.
doi: 10.2522/ptj.20090079
pmid: 20022995
|
[28] |
NAM Y G, LEE J W, PARK J W, et al. Effects of electromechanical exoskeleton-assisted gait training on walking ability of stroke patients: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2019, 100(1): 26-31.
doi: 10.1016/j.apmr.2018.06.020
|
[29] |
MOLTENI F, GUANZIROLI E, GOFFREDO M, et al. Gait recovery with an overground powered exoskeleton: a randomized controlled trial on subacute stroke subjects[J]. Brain Sci, 2021, 11(1): 104.
doi: 10.3390/brainsci11010104
|
[30] |
MUSTAFAOGLU R, ERHAN B, YELDAN I, et al. Does robot-assisted gait training improve mobility, activities of daily living and quality of life in stroke? A single-blinded, randomized controlled trial[J]. Acta Neurol Belgica, 2020, 120(2): 335-344.
doi: 10.1007/s13760-020-01276-8
|
[31] |
CALABRÒ R S, NARO A, RUSSO M, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial[J]. J Neuroeng Rehabil, 2018, 15(1): 35.
doi: 10.1186/s12984-018-0377-8
pmid: 29695280
|
[32] |
MULROY S, GRONLEY J, WEISS W, et al. Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke[J]. Gait Posture, 2003, 18(1): 114-125.
pmid: 12855307
|
[33] |
龙建军, 王玉龙, 王同, 等. 下肢外骨骼康复机器人对偏瘫患者步态参数的影响[J]. 中国康复医学杂志, 2021, 36(9): 1107-1110.
|
|
LONG J J, WANG Y L, WANG T, et al. Effects of lower limb exoskeleton robot on gait parameters in hemiplegic patients[J]. Chin J Rehabil Med, 2021, 36(9): 1107-1110.
|
[34] |
CALABRÒ R S, DE COLA M C, LEO A, et al. Robotic neurorehabilitation in patients with chronic stroke: psychological well-being beyond motor improvement[J]. Int J Rehabil Res, 2015, 38(3): 219-225.
doi: 10.1097/MRR.0000000000000114
pmid: 25816006
|
[35] |
BANG D H, SHIN W S. Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: a randomized controlled pilot trial[J]. NeuroRehabilitation, 2016, 38(4): 343-349.
doi: 10.3233/NRE-161325
|