[1] |
World Health Organization. International perspectives on spinal cord injury[EB/OL]. (2023-11-11) [2023-11-16]. https://www.who.int/publications/i/item/international-perspectives-on-spinal-cord-injury.
|
[2] |
DUAN R, QU M, YUAN Y, et al. Clinical benefit of rehabilitation training in spinal cord injury: a systematic review and meta-analysis[J]. Spine (Phila Pa 1976), 2021, 46(6): E398-E410.
doi: 10.1097/BRS.0000000000003789
|
[3] |
PATATHONG T, KLAEWKASIKUM K, WORATANARAT P, et al. The efficacy of gait rehabilitations for the treatment of incomplete spinal cord injury: a systematic review and network meta-analysis[J]. J Orthop Surg Res, 2023, 18(1): 60.
doi: 10.1186/s13018-022-03459-w
pmid: 36683024
|
[4] |
NOOIJEN C F, VAN DEN BRAND I L, TER HORST P, et al. Feasibility of handcycle training during inpatient rehabilitation in persons with spinal cord injury[J]. Arch Phys Med Rehabil, 2015, 96(9): 1654-1657.
doi: 10.1016/j.apmr.2015.05.014
|
[5] |
YANG A, ASSELIN P, KNEZEVIC S, et al. Assessment of in-hospital walking velocity and level of assistance in a powered exoskeleton in persons with spinal cord injury[J]. Top Spinal Cord Inj Rehabil, 2015, 21(2): 100-109.
doi: 10.1310/sci2102-100
pmid: 26364279
|
[6] |
LAJEUNESSE V, VINCENT C, ROUTHIER F, et al. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury[J]. Disabil Rehabil Assist Technol, 2016, 11(7): 535-547.
doi: 10.3109/17483107.2015.1080766
pmid: 26340538
|
[7] |
BAKKUM A J, DE GROOT S, STOLWIJK-SWÜSTE J M, et al. Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: a 16-week randomized controlled trial[J]. Spinal Cord, 2015, 53(5): 395-401.
doi: 10.1038/sc.2014.237
pmid: 25622729
|
[8] |
邹敏, 孙宏伟, 邱卓英, 等. 基于ICD-11和ICF的智力残疾术语、诊断和分类研究[J]. 中国康复理论与实践, 2019, 25(1): 1-5.
doi: 10.3969/j.issn.1006-9771.2019.01.001
|
|
ZOU M, SUN H W, QIU Z Y, et al. Terminology, diagnosis and classification of intellectual disability using WHO ICD-11 and ICF[J]. Chin J Rehabil Theory Pract, 2019, 25(1): 1-5
|
[9] |
郭彤彤, 杨剑, 吴铭, 等. 成年运动功能障碍者电子游戏干预的Scoping综述[J]. 中国康复理论与实践, 2022, 28(9): 1012-1021.
doi: 10.3969/j.issn.1006-9771.2022.09.003
|
|
GUO T T, YANG J, WU M, et al. Effect of video games intervention on adults motor functioning: a scoping review[J]. Chin J Rehabil Theory Pract, 2022, 28(9): 1012-1021.
|
[10] |
世界卫生组织. 国际功能、残疾和健康分类(国际中文增补版)[M]. 邱卓英,译. 日内瓦: 世界卫生组织, 2015.
|
|
World Health Organization. International Classification of Functioning, Disability and Health-International Chinese Supplement[M]. QIU Z Y, trans trans. Geneva: World Health Organization, 2015.
|
[11] |
杨同念, 肖辉. 残疾儿童青少年身体活动及其健康效果:系统综述的系统综述[J]. 中国康复理论与实践, 2022, 28(11): 1299-1308.
doi: 10.3969/j.issn.1006-9771.2022.11.009
|
|
YANG T N, XIAO H. Physical activity and its health benefits for children and adolescents with disabilities: a systematic review of systematic reviews[J]. Chin J Rehabil Theory Pract, 2022, 28(11): 1299-1308.
|
[12] |
LOUIE D R, ENG J J, LAM T. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study[J]. J Neuroeng Rehabil, 2015, 12(3): 82.
doi: 10.1186/s12984-015-0074-9
|
[13] |
MILLER L E, ZIMMERMANN A K, HERBERT W G. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis[J]. Med Devices (Auckl), 2016, 9(2): 455-466.
|
[14] |
NAM K Y, KIM H J, KWON B S, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review[J]. J Neuroeng Rehabil, 2017, 14(1): 24.
doi: 10.1186/s12984-017-0232-3
pmid: 28330471
|
[15] |
OLIVEIRA J I, OLIVEIRA L, COSTA M, et al. Impacts of home-based physical exercises on the health of people with spinal cord injury: a systematic review[J]. Revista Brasileira de Atividade Física & Saúde, 2021, 26(5): 505-516.
|
[16] |
FIGONI S F, DOLBOW D R, CRAWFORD E C, et al. Does aerobic exercise benefit persons with tetraplegia from spinal cord injury? A systematic review[J]. J Spinal Cord Med, 2021, 44(5): 690-703.
doi: 10.1080/10790268.2020.1722935
|
[17] |
QUEL DE OLIVEIRA C, REFSHAUGE K, MIDDLETON J, et al. Effects of activity-based therapy interventions on mobility, independence, and quality of life for people with spinal cord injuries: a systematic review and meta-analysis[J]. J Neurotrauma, 2017, 34(9): 172617-172643.
|
[18] |
NEEFKES-ZONNEVELD C R, BAKKUM A J, BISHOP N C, et al. Effect of long-term physical activity and acute exercise on markers of systemic inflammation in persons with chronic spinal cord injury: a systematic review[J]. Arch Phys Med Rehabil, 2015, 96(1): 30-42.
doi: 10.1016/j.apmr.2014.07.006
|
[19] |
PHADKE C P, VIERIRA L, MATHUR S, et al. Impact of passive leg cycling in persons with spinal cord injury: a systematic review[J]. Top Spinal Cord Inj Rehabil, 2019, 25(1): 83-96.
doi: 10.1310/sci18-00020
pmid: 30774292
|
[20] |
BARBOSA P, GLINSKY J V, FACHIN-MARTINS E, et al. Physiotherapy interventions for the treatment of spasticity in people with spinal cord injury: a systematic review[J]. Spinal Cord, 2021, 59(3): 236-247.
doi: 10.1038/s41393-020-00610-4
pmid: 33564117
|
[21] |
AGUIRRE-GÜEMEZ A V, PÉREZ-SANPABLO A I, QUINZAÑOS-FRESNEDO J, et al. Walking speed is not the best outcome to evaluate the effect of robotic assisted gait training in people with motor incomplete spinal cord injury: a systematic review with meta-analysis[J]. J Spinal Cord Med, 2019, 42(2): 142-154.
doi: 10.1080/10790268.2017.1390644
|
[22] |
VAN DER SCHEER J W, DE GROOT S, TEPPER M, et al. Low-intensity wheelchair training in inactive people with long-term spinal cord injury: a randomized controlled trial on fitness, wheelchair skill performance and physical activity levels[J]. J Rehabil Med, 2016, 48(1): 33-42.
doi: 10.2340/16501977-2037
pmid: 26660337
|
[23] |
ARAZPOUR M, HUTCHINS S W, AHMADI BANI M. The efficacy of powered orthoses on walking in persons with paraplegia[J]. Prosthet Orthot Int, 2015, 39(2): 90-99.
doi: 10.1177/0309364613520031
pmid: 24549210
|
[24] |
ARAZPOUR M, SAMADIAN M, BAHRAMIZADEH M, et al. The efficiency of orthotic interventions on energy consumption in paraplegic patients: a literature review[J]. Spinal Cord, 2015, 53(3): 168-175.
doi: 10.1038/sc.2014.227
pmid: 25600308
|
[25] |
KOZLOWSKI A J, BRYCE T N, DIJKERS M P. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking[J]. Top Spinal Cord Inj Rehabil, 2015, 21(2): 110-121.
doi: 10.1310/sci2102-110
pmid: 26364280
|
[26] |
GORGEY A S, LESTER R M, WADE R C, et al. A feasibility pilot using telehealth videoconference monitoring of home-based NMES resistance training in persons with spinal cord injury[J]. Spinal Cord Ser Cases, 2017, 3(1): 17039.
doi: 10.1038/scsandc.2017.39
|
[27] |
RUPP R, SCHLIESSMAN D, PLEWA H, et al. Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: a prospective, pre-post intervention, proof-of-concept study[J]. PLoS One, 2015, 10(3): e0119167.
doi: 10.1371/journal.pone.0119167
|
[28] |
TEFERTILLER C, BARTELT P, STOBELAAR M, et al. Improving upper extremity strength, function, and trunk stability using wide-pulse functional electrical stimulation in combination with functional task-specific practice[J]. Top Spinal Cord Inj Rehabil, 2022, 28(2): 139-152.
doi: 10.46292/sci21-00004
pmid: 35521056
|
[29] |
WIESENER C, SPIEKER L, AXELGAARD J, et al. Supporting front crawl swimming in paraplegics using electrical stimulation: a feasibility study[J]. J Neuroeng Rehabil, 2020, 17(1): 51.
doi: 10.1186/s12984-020-00682-6
pmid: 32299483
|