[1] |
MCNUTT E J, ZIPFEL B, DESILVA J M. The evolution of the human foot[J]. Evol Anthropol, 2018, 27(5): 197-217.
doi: 10.1002/evan.21713
pmid: 30242943
|
[2] |
HORNESTAM J F, ARANTES P M M, SOUZA T R, et al. Foot pronation affects pelvic motion during the loading response phase of gait[J]. Braz J Phys Ther, 2021, 25(6): 727-734.
doi: 10.1016/j.bjpt.2021.04.005
pmid: 34020879
|
[3] |
杨平, 蔡丽飞. 足过度旋前对人体力线的影响及治疗方法[J]. 中国康复理论与实践, 2016, 22(1): 72-74.
|
|
YANG P, CAI L F. Foot overpronation: influence on body alignment and managements[J]. Chin J Rehabil Theory Pract, 2016, 22(1): 72-74.
|
[4] |
LEARDINI A, STEBBINS J, HILLSTROM H, et al. ISB recommendations for skin-marker-based multi-segment foot kinematics[J]. J Biomech, 2021, 125: 110581.
|
[5] |
LEARDINI A, CARAVAGGI P, THEOLOGIS T, et al. Multi-segment foot models and their use in clinical populations[J]. Gait Posture, 2019, 69: 50-59.
doi: S0966-6362(18)31705-3
pmid: 30665039
|
[6] |
BAUER L, HAMBERGER M A, BÖCKER W, et al. Development of an IMU based 2-segment foot model for an applicable medical gait analysis[J]. BMC Musculoskelet Disord, 2024, 25(1): 606.
|
[7] |
CAMPBELL K J, WILSON K J, LAPRADE R F, et al. Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy[J]. Knee Surg Sports Traumatol Arthrosc, 2016, 24(4): 1402-1408.
|
[8] |
LENZ A L, STROBEL M A, ANDERSON A M, et al. Assignment of local coordinate systems and methods to calculate tibiotalar and subtalar kinematics: a systematic review[J]. J Biomech, 2021, 120: 110344.
|
[9] |
CHAN P H, STEBBINS J, ZAVATSKY A B. Efficacy of quantifying marker-cluster rigidity in a multi-segment foot model: a Monte-Carlo based global sensitivity analysis and regression model[J]. Comput Methods Biomech Biomed Eng, 2022, 25(3): 308-319.
|
[10] |
STONE A, STENDER C J, WHITTAKER E C, et al. Ability of a multi-segment foot model to measure kinematic differences in cavus, neutrally aligned, asymptomatic planus, and symptomatic planus foot types[J]. Gait Posture, 2024, 113: 452-461.
|
[11] |
SIMON J, DOEDERLEIN L, MCINTOSH A S, et al. The Heidelberg foot measurement method: development, description and assessment[J]. Gait Posture, 2006, 23(4): 411-424.
doi: 10.1016/j.gaitpost.2005.07.003
pmid: 16157483
|
[12] |
RANKINE L, LONG J, CANSECO K, et al. Multisegmental foot modeling: a review[J]. Crit Rev Biomed Eng, 2008, 36(2-3): 127-181.
doi: 10.1615/critrevbiomedeng.v36.i2-3.30
pmid: 19740070
|
[13] |
SCHALLIG W, VAN DEN NOORT J C, PIENING M, et al. The Amsterdam Foot Model: a clinically informed multi-segment foot model developed to minimize measurement errors in foot kinematics[J]. J Foot Ankle Res, 2022, 15(1): 46.
|
[14] |
ZHU S, JENKYN T. Development of a clinically useful multi-segment kinetic foot model[J]. J Foot Ankle Res, 2023, 16(1): 86.
|
[15] |
SCHALLIG W, VAN DEN NOORT J C, MCCAHILL J, et al. Comparing the kinematic output of the Oxford and Rizzoli Foot Models during normal gait and voluntary pathological gait in healthy adults[J]. Gait Posture, 2020, 82: 126-132.
doi: S0966-6362(20)30524-5
pmid: 32920448
|
[16] |
TEIXEIRA B G, ARAÚJO V L, SANTOS T R T, et al. Comparison between the Rizzoli and Oxford foot models with independent and clustered tracking markers[J]. Gait Posture, 2022, 91: 48-51.
|
[17] |
BALSDON M E R, DOMBROSKI C E. Reliability of a multi-segment foot model in a neutral cushioning shoe during treadmill walking[J]. J Foot Ankle Res, 2018, 11: 60.
doi: 10.1186/s13047-018-0301-2
pmid: 30473733
|
[18] |
SHULTZ R, JENKYN T. Determining the maximum diameter for holes in the shoe without compromising shoe integrity when using a multi-segment foot model[J]. Med Eng Phys, 2012, 34(1): 118-122.
doi: 10.1016/j.medengphy.2011.06.017
pmid: 21890394
|
[19] |
SHULTZ R, KEDGLEY A E, JENKYN T R. Quantifying skin motion artifact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy[J]. Gait Posture, 2011, 34(1): 44-48.
doi: 10.1016/j.gaitpost.2011.03.008
pmid: 21498078
|
[20] |
SCHALLIG W, STREEKSTRA G J, HULSHOF C M, et al. The influence of soft tissue artifacts on multi-segment foot kinematics[J]. J Biomech, 2021, 120: 110359.
|
[21] |
张发宁, 叶东强, 孙晓乐, 等. 着鞋与裸足对跑步时第1跖趾关节的在体运动学影响[J]. 中国运动医学杂志, 2022, 41(8): 617-624.
|
|
ZHANG F N, YE D Q, SUN X L, et al. Effects of shoe-wearing and barefoot on the in vivo kinematics of the first metatarsophalangeal joint during running[J]. Chin J Sports Med, 2022, 41(8): 617-624.
|
[22] |
MCHENRY B D, EXTEN E, LONG J T, et al. Sagittal fluoroscopy for the assessment of hindfoot kinematics[J]. J Biomech Eng, 2016, 138(3): 4032445.
|
[23] |
MCHENRY B D, EXTEN E L, LONG J, et al. Sagittal subtalar and talocrural joint assessment with weight-bearing fluoroscopy during barefoot ambulation[J]. Foot Ankle Int, 2015, 36(4): 430-435.
doi: 10.1177/1071100714559540
pmid: 25380773
|
[24] |
MCHENRY B D, EXTEN E L, CROSS J A, et al. Sagittal subtalar and talocrural joint assessment during ambulation with controlled ankle movement (CAM) boots[J]. Foot Ankle Int, 2017, 38(11): 1260-1266.
doi: 10.1177/1071100717723129
pmid: 28800714
|
[25] |
MCHENRY B D, KRUGER K M, EXTEN E L, et al. Sagittal subtalar and talocrural joint assessment between barefoot and shod walking: a fluoroscopic study[J]. Gait Posture, 2019, 72: 57-61.
doi: S0966-6362(18)31123-8
pmid: 31151088
|
[26] |
张发宁, 孙晓乐, 张燊, 等. 不同跑姿对第1跖趾关节在体6自由度的影响[J]. 医用生物力学, 2021, 36(S1): 341.
|
[27] |
ZHANG F, YE D, ZHANG X, et al. Influence of shod and barefoot running on the in vivo kinematics of the first metatarsophalangeal joint[J]. Front Bioeng Biotechnol, 2022, 10: 892760.
|
[28] |
OKKALIDIS N, MARINAKIS G, GATT A, et al. A multi-segment modelling approach for foot trajectory estimation using inertial sensors[J]. Gait Posture, 2020, 75: 22-27.
doi: S0966-6362(19)30087-6
pmid: 31590066
|
[29] |
张怡颖. 基于IMU的人体全身运动捕捉技术与装置研究[D]. 杭州: 浙江大学, 2018.
|
|
ZHANG Y Y. Research for human body motion caputure technology and device based on IMU[D]. Hangzhou: Zhejing University, 2018.
|
[30] |
ROUHANI H, FAVRE J, CREVOISIER X, et al. Measurement of multi-segment foot joint angles during gait using a wearable system[J]. J Biomech Eng, 2012, 134(6): 061006.
|
[31] |
SWANSON E C, WEATHERSBY E J, CAGLE J C, et al. Evaluation of force sensing resistors for the measurement of interface pressures in lower limb prosthetics[J]. J Biomech Eng, 2019, 141(10): 1010091-10100913.
|
[32] |
YANG P, ROWE P. A new, simple, inexpensive system for measuring foot movement with widespread applications in the rehabilitation clinic[C]. Pathum Thani, Thailand:Proceedings of the 16th International Convention on Rehabilitation Engineering and Assistive Technology, 2024: 33-36.
|
[33] |
GROOD E S, SUNTAY W J. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee[J]. J Biomech Eng, 1983, 105(2): 136-144.
|
[34] |
ALLAN J J, MCCLELLAND J A, MUNTEANU S E, et al. First metatarsophalangeal joint range of motion is associated with lower limb kinematics in individuals with first metatarsophalangeal joint osteoarthritis[J]. J Foot Ankle Res, 2020, 13(1): 33.
|
[35] |
WEGENER C, GREENE A, BURNS J, et al. In-shoe multi-segment foot kinematics of children during the propulsive phase of walking and running[J]. Hum Mov Sci, 2015, 39: 200-211.
|
[36] |
ROOT M W J, ORIEN W. Normal and abnormal function of the foot[M]. Los Angeles: Clinical Biomechanics Corporation, 1977.
|
[37] |
HOLLANDER K, HEIDT C, BC V D Z, et al. Long-term effects of habitual barefoot running and walking: a aystematic review[J]. Med Sci Sports Exerc, 2017, 49(4): 752-762.
|
[38] |
REINSTEIN M, WEISMAN A, MASHARAWI Y. Barefoot walking is beneficial for individuals with persistent plantar heel pain: a single-blind randomized controlled trial[J]. Ann Phys Rehabil Med, 2024, 67(2): 101786.
|
[39] |
STOLT M, SUHONEN R, KIELO E, et al. Foot health of nurses: a cross-sectional study[J]. Int J Nurs Pract, 2017, 23(4): e12560.
|
[40] |
BERNARDES R A, PARREIRA P, SOUSA L B, et al. Foot disorders in nursing standing environments: a scoping review protocol[J]. Nurs Rep, 2021, 11(3): 584-589.
|
[41] |
MBUE N D, WANG W. Nurses' experience with chronic foot pain and their job: the national science foundation foot health survey[J]. Heliyon, 2023, 9(3): e14485.
|
[42] |
陈佳丽, 谢静颖, 李佩芳, 等. 四川省三级医院护士足部健康现状及影响因素[J]. 护理研究, 2020, 34(23): 4275-4280.
|
|
CHEN J L, XIE J Y, LI P F, et al. Status quo and influencing factors of foot health of nurses in tertiary hospitals in Sichuan province[J]. Chin Nurs Res, 2020, 34(23): 4275-4280.
|
[43] |
JACQUIER-BRET J, GORCE P. Prevalence of body area work-related musculoskeletal disorders among healthcare professionals: a systematic review[J]. Int J Environ Res Public Health, 2023, 20(1): 841.
|
[44] |
YAWAR A, LIEBERMAN D E. Effects of shoe heel height on ankle dynamics in running[J]. Sci Rep, 2024, 14(1): 17959.
|
[45] |
JAKOBSEN L, LYSDAL F G, BAGEHORN T, et al. The effect of footwear outsole material on slip resistance on dry and contaminated surfaces with geometrically controlled outsoles[J]. Ergonomics, 2023, 66(3): 322-329.
|
[46] |
TIRTASHI F H, ESLAMI M, TAGHIPOUR M. Effect of shoe insole on the dynamics of lower extremities in individuals with leg length discrepancy during walking[J]. J Bodyw Mov Ther, 2022, 31: 51-56.
doi: 10.1016/j.jbmt.2022.03.006
pmid: 35710221
|
[47] |
LIU Z, NIE J, YANG F, et al. Influence of shoe upper structure on shoe microclimate and human physiological characteristics during running[J]. Technol Health Care, 2024, 32(S1): 487-499.
|
[48] |
SPENCER S. Biomechanical effects of shoe gear on the lower extremity[J]. Clin Podiatr Med Surg, 2020, 37(1): 91-99.
|