[1] |
MACKAY J, MENSAH G A. The atlas of heart disease and stroke[M]. Geneva: World Health Organization, 2004.
|
[2] |
KIM Y W. Update on stroke rehabilitation in motor impairment[J]. Brain Neurorehabil, 2022, 15(2): e12.
|
[3] |
JACKSON N, HAXTON E, MORRISON K, et al. Reflections on 50 years of neuroscience nursing: the growth of stroke nursing[J]. J Neurosci Nurs, 2018, 50(4): 188-192.
doi: 10.1097/JNN.0000000000000375
pmid: 29750679
|
[4] |
TATER P, PANDEY S. Post-stroke movement disorders: clinical spectrum, pathogenesis, and management[J]. Neurol India, 2021, 69(2): 272-283.
doi: 10.4103/0028-3886.314574
pmid: 33904435
|
[5] |
STINEAR C M, LANG C E, ZEILER S, et al. Advances and challenges in stroke rehabilitation[J]. Lancet Neurol, 2020, 19(4): 348-360.
doi: S1474-4422(19)30415-6
pmid: 32004440
|
[6] |
LIU X F, WANG G H, MIAO F R. The effect of early cognitive training and rehabilitation for patients with cognitive dysfunction in stroke[J]. Int J Method Psychiatr Res, 2021, 30(3): e1882.
|
[7] |
LIANG H, LIU S, WANG Y, et al. Multi-user upper limb rehabilitation training system integrating social interaction[J]. Comput Graph, 2023, 111: 103-110.
|
[8] |
GANESH G, TAKAGI A, OSU R, et al. Two is better than one: Physical interactions improve motor performance in humans[J]. Sci Rep, 2014, 4: 3824.
doi: 10.1038/srep03824
pmid: 24452767
|
[9] |
BISHOP L, BROWN S C, GARDENER H, et al. The association between social networks and functional recovery after stroke[J]. [ahead of print]. Int J Stroke, 2024. doi: 10.1177/17474930241283167.
|
[10] |
BATSON J P, KATO Y, SHUSTER K, et al. Haptic coupling in dyads improves motor learning in a simple force field[C]. Montreal, Canada:42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020.
|
[11] |
THIELBAR K O, TRIANDAFILOU K M, BARRY A J, et al. Home-based upper extremity stroke therapy using a multiuser virtual reality environment: a randomized trial[J]. Arch Phys Med Rehabil, 2020, 101(2): 196-203.
|
[12] |
BAUR K, ROHRBACH N, HERMSDÖRFER J, et al. The "Beam-Me-In Strategy": remote haptic therapist-patient interaction with two exoskeletons for stroke therapy[J]. J Neuroeng Rehabil, 2019, 16(1): 85.
|
[13] |
KÜÇÜKTABAK E B, KIM S J, WEN Y, et al. Human-machine-human interaction in motor control and rehabilitation: a review[J]. J Neuroeng Rehabil, 2021, 18(1): 183.
|
[14] |
OZKUL F, PALASKA Y, MASAZADE E, et al. Exploring dynamic difficulty adjustment mechanism for rehabilitation tasks using physiological measures and subjective ratings[J]. IET Sign Proc, 2019, 13(3): 378-386.
|
[15] |
ÖZKUL F, BARKANA D E, MASAZADE E. Dynamic difficulty level adjustment based on score and physiological signal feedback in the robot-assisted rehabilitation system, RehabRoby[J]. IEEE Robot Autom Lett, 2020, 6(2): 447-454.
|
[16] |
HARE R, TANG Y. Player modeling and adaptation methods within adaptive serious games[J]. IEEE Trans Comput Social Syst, 2022, 10(4): 1939-1950.
|
[17] |
苗青, 孙晨阳, 张明明, 等. 基于任务表现的机器人辅助康复自适应控制策略[J]. 机器人, 2021, 43(5): 539-546, 556.
doi: 10.13973/j.cnki.robot.200555
|
|
MIAO Q, SUN C Y, ZHANG M M, et al. Performance-based adaptive control strategy for robot-assisted rehabilitation[J]. Robot, 2021, 43(5): 539-546, 556.
doi: 10.13973/j.cnki.robot.200555
|
[18] |
CATALÁN J M, GARCÍA-PÉREZ J V, BLANCO A, et al. Differences in physiological reactions due to a competitive rehabilitation game modality[J]. Sensors, 2021, 21(11): 3681.
|
[19] |
NAVARRO M D, LLORENS R, BORREGO A, et al. Competition enhances the effectiveness and motivation of attention rehabilitation after stroke. A randomized controlled trial[J]. Front Hum Neurosci, 2020, 14: 575403.
|
[20] |
TANAKA Y, WADA S. Analysis of cooperative motions in a ball-manipulation task toward robot-aided rehabilitation for the upper extremity[C]. Munich, Germany: IEEE International Conference on Cyborg and Bionic Systems (CBS), 2019.
|
[21] |
蔡华年, 费思先, 张忆晨, 等. 基于导纳控制的双边康复机器人运动辅助分析[J]. 中国康复理论与实践, 2023, 29(9): 1104-1109.
doi: 10.3969/j.issn.1006-9771.2023.09.015
|
|
CAI H N, FEI S X, ZHANG Y C, et al. Motion assistance analysis for robot-assisted tele-rehabilitation based on bilateral admittance control[J]. Chin J Rehabil Theory Pract, 2023, 29(9): 1104-1109.
|
[22] |
GORŠIČ M, DARZI A, NOVAK D. Comparison of two difficulty adaptation strategies for competitive arm rehabilitation exercises[C]. QEII Center, London: International Conference on Rehabilitation Robotics (ICORR), 2017.
|
[23] |
ANDRADE K O, PASQUAL T B, CAURIN G A P, et al. Dynamic difficulty adjustment with evolutionary algorithm in games for rehabilitation robotics[C]. Orlando, FL, USA: IEEE International Conference on Serious Games and Applications for Health (SeGAH), 2016.
|
[24] |
MACE M, KINANY N, RINNE P, et al. Balancing the playing field: collaborative gaming for physical training[J]. J Neuroeng Rehabil, 2017, 14(1): 116.
|
[25] |
KLOBUCKA S, ZIAKOVA E, KLOBUCKY R. The effect of virtual reality environment during robotic-assisted locomotor training on gross motor functions in patients with cerebral palsy[J]. Česká Slovenská Neurol Neurosurg, 2013, 76(6): 702-711.
|
[26] |
CAO R, CHENG L, YANG C G, et al. Iterative assist-as-needed control with interaction factor for rehabilitation robots[J]. Sci Chin Technol Sci, 2021, 64(4): 836-846.
|
[27] |
FEI S, SUN Q, ZHANG Y, et al. Performance-based assistance control for upper limb robotic mirror therapy[J]. J Bionic Eng, 2024 21: 2291-2301.
|
[28] |
MOUNIS S Y A, AZLAN N Z, SADO F. Assist-as-needed control strategy for upper-limb rehabilitation based on subject's functional ability[J]. Meas Control, 2019, 52(9/10): 1354-1361.
|
[29] |
LUO L, PENG L, WANG C, et al. A greedy assist-as-needed controller for upper limb rehabilitation[J]. IEEE Trans Neural Network Learn Syst, 2019, 30(11): 3433-3443.
|
[30] |
SHAHBAZI M, ATASHZAR S F, TAVAKOLI M, et al. Robotics-assisted mirror rehabilitation therapy: a therapist-in-the-loop assist-as-needed architecture[J]. IEEE/ASME Trans Mechatron, 2016, 21(4): 1954-1965.
|
[31] |
MOUNIS S Y A, AZLAN N Z, SADO F. Assist-as-needed robotic rehabilitation strategy based on Z-spline estimated functional ability[J]. IEEE Access, 2020, 8: 157557-157571.
|
[32] |
QIAN C, LI W, JIA T, et al. Quantitative assessment of motor function by an end-effector upper limb rehabilitation robot based on admittance control[J]. Appl Sci, 2021, 11(15): 6854.
|
[33] |
LIU Y, SONG Q, LI C, et al. Quantitative assessment of motor function for patients with a stroke by an end-effector upper limb rehabilitation robot[J]. BioMed Res Int, 2020, 2020: 5425741.
|
[34] |
GHANAVATI M A, VAFA E, SHAHROKHI M. Control of an anaerobic bioreactor using a fuzzy supervisory controller[J]. J Proc Control, 2021, 103: 87-99.
|