[1] |
XU G, HUO C, YIN J, et al. Effective brain network analysis in unilateral and bilateral upper limb exercise training in subjects with stroke[J]. Med Phys, 2022, 49(5): 3333-3346.
doi: 10.1002/mp.15570
pmid: 35262918
|
[2] |
LIU L, JIN M, ZHANG L, et al. Brain-computer interface-robot training enhances upper extremity performance and changes the cortical activation in stroke patients: a functional near-infrared spectroscopy study[J]. Front Neurosci, 2022, 16: 809657.
|
[3] |
YUAN R, QIAO X, TANG C, et al. Effects of uni- vs. bilateral upper limb robot-assisted rehabilitation on motor function, activities of daily living, and electromyography in hemiplegic stroke: a single-blinded three-arm randomized controlled trial[J]. J Clin Med, 2023, 12(8): 2950.
|
[4] |
NI J, JIANG W, GONG X, et al. Effect of rTMS intervention on upper limb motor function after stroke: a study based on fNIRS[J]. Front Aging Neurosci, 2023, 14: 1077218.
|
[5] |
LI C, CHEN Y, TU S, et al. Dual-tDCS combined with sensorimotor training promotes upper limb function in subacute stroke patients: a randomized, double-blinded, sham-controlled study[J]. CNS Neurosci Ther, 2023, 30(4): e14530.
|
[6] |
HUO C, XU G, XIE H, et al. Functional near-infrared spectroscopy in non-invasive neuromodulation[J]. Neural Regen Res, 2023, 19(7): 1517-1522.
|
[7] |
XU J, BRANSCHEIDT M, SCHAMBRA H, et al. Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation[J]. Ann Neurol, 2019, 85(4): 502-513.
doi: 10.1002/ana.25452
pmid: 30805956
|
[8] |
PHIPPS M S, CRONIN C A. Management of acute ischemic stroke[J]. BMJ, 2020, 368: l6983.
|
[9] |
CHEN N, QIU X, HUA Y, et al. Effects of sequential inhibitory and facilitatory repetitive transcranial magnetic stimulation on neurological and functional recovery of a patient with chronic stroke: a case report and literature review[J]. Front Neurol, 2023, 14: 1064718.
|
[10] |
MIYAI I, TANABE H C, SASE I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study[J]. Neuroimage, 2001, 14(5): 1186-1192.
pmid: 11697950
|
[11] |
邰佳慧, 李浩正, 王婷玮, 等. 基于功能性近红外光谱技术的吞咽相关任务大脑皮质功能偏侧化研究[J]. 中国康复医学杂志, 2022, 37(5): 594-599.
|
|
TAI J H, LI H Z, WANG T W, et al. Lateralization of cerebral cortex function in swallowing related tasks: a functional near-infrared spectroscopy study[J]. Chin J Rehabil Med, 2022, 37(5): 594-599.
|
[12] |
KRAKAUER J W, CARMICHAEL S T, CORBETT D, et al. Getting neurorehabilitation right: what can be learned from animal models?[J]. Neurorehabil Neural Repair, 2012, 26(8): 923-931.
doi: 10.1177/1545968312440745
pmid: 22466792
|
[13] |
SAINI V, GUADA L, YAVAGAL D R. Global epidemiology of stroke and access to acute ischemic stroke interventions[J]. Neurology, 2021, 97(20 Suppl 2): S6-S16.
doi: 10.1212/WNL.0000000000012781
pmid: 34785599
|
[14] |
DI PINO G, PELLEGRINO G, ASSENZA G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation[J]. Nat Rev Neurol, 2014, 10(10): 597-608.
doi: 10.1038/nrneurol.2014.162
pmid: 25201238
|
[15] |
俞风云, 朱玉连, 王卫宁, 等. 经颅磁刺激在脑卒中患者中的应用及机制研究进展[J]. 中国康复医学杂志, 2021, 36(8): 1030-1034.
|
|
YU F Y, ZHU Y L, WANG W N, et al. Application and mechanism of transcranial magnetic stimulation in stroke patients[J]. Chin J Rehabil Med, 2021, 36(8): 1030-1034.
|
[16] |
WANG Z, LIAO M, LI Q, et al. Effects of three different rehabilitation games' interaction on brain activation using functional near-infrared spectroscopy[J]. Physiol Meas, 2020, 41(12): 125005.
|
[17] |
XU G, CHEN T, YIN J, et al. Lateralization of cortical activity, networks, and hemodynamic lag after stroke: a resting-state fNIRS study[J]. J Biophotonics, 2024, 17(7): e202400012.
|
[18] |
BONNAL J, OZSANCAK C, MONNET F, et al. Neural substrates for hand and shoulder movement in healthy adults: a functional near infrared spectroscopy study[J]. Brain Topogr, 2023, 36(4): 447-458.
doi: 10.1007/s10548-023-00972-x
pmid: 37202647
|
[19] |
DUVERNE S, KOECHLIN E. Rewards and cognitive control in the human prefrontal cortex[J]. Cereb Cortex, 2017, 27(10): 5024-5039.
doi: 10.1093/cercor/bhx210
pmid: 28922835
|
[20] |
GREFKES C, FINK G R. Connectivity-based approaches in stroke and recovery of function[J]. Lancet Neurol, 2014, 13(2): 206-216.
doi: 10.1016/S1474-4422(13)70264-3
pmid: 24457190
|
[21] |
LI C, WONG Y, LANGHAMMER B, et al. A study of dynamic hand orthosis combined with unilateral task-oriented training in subacute stroke: a functional near-infrared spectroscopy case series[J]. Front Neurol, 2022, 13: 907186.
|
[22] |
AAMODT E B, LYDERSEN S, ALNÆS D, et al. Longitudinal brain changes after stroke and the association with cognitive decline[J]. Front Neurol, 2022, 13: 856919.
|
[23] |
FUJIMOTO H, MIHARA M, HATTORI N, et al. Cortical changes underlying balance recovery in patients with hemiplegic stroke[J]. Neuroimage, 2013, 85(Pt 1): 547-554.
|
[24] |
REHME A K, EICKHOFF S B, WANG L E, et al. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke[J]. Neuroimage, 2011, 55(3): 1147-1158.
doi: 10.1016/j.neuroimage.2011.01.014
pmid: 21238594
|
[25] |
XIA W, DAI R, XU X, et al. Cortical mapping of active and passive upper limb training in stroke patients and healthy people: a functional near-infrared spectroscopy study[J]. Brain Res, 2022, 1788: 147935.
|
[26] |
BAJAJ S, HOUSLEY S N, WU D, et al. Dominance of the unaffected hemisphere motor network and its role in the behavior of chronic stroke survivors[J]. Front Hum Neurosci, 2016, 10: 650.
doi: 10.3389/fnhum.2016.00650
pmid: 28082882
|
[27] |
KINOSHITA S, TAMASHIRO H, OKAMOTO T, et al. Association between imbalance of cortical brain activity and successful motor recovery in sub-acute stroke patients with upper limb hemiparesis: a functional near-infrared spectroscopy study[J]. Neuroreport, 2019, 30(12): 822-827.
doi: 10.1097/WNR.0000000000001283
pmid: 31283713
|
[28] |
WARD N S, NEWTON J M, SWAYNE O B, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity[J]. Brain, 2006, 129(Pt 3): 809-819.
doi: 10.1093/brain/awl002
pmid: 16421171
|
[29] |
GREFKES C, EICKHOFF S B, NOWAK D A, et al. Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM[J]. Neuroimage, 2008, 41(4): 1382-1394.
doi: 10.1016/j.neuroimage.2008.03.048
pmid: 18486490
|
[30] |
REHME A K, FINK G R, VON CRAMON D Y, et al. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal fMRI[J]. Cereb Cortex, 2010, 21(4): 756-768.
|
[31] |
BORRELL J A, FRASER K, MANATTU A K, et al. Laterality index calculations in a control study of functional near infrared spectroscopy[J]. Brain Topogr, 2023, 36(2): 210-222.
doi: 10.1007/s10548-023-00942-3
pmid: 36757503
|
[32] |
DELORME M, VERGOTTE G, PERREY S, et al. Time course of sensorimotor cortex reorganization during upper extremity task accompanying motor recovery early after stroke: an fNIRS study[J]. Restor Neurol Neurosci, 2019, 37(3): 207-218.
|