《中国康复理论与实践》 ›› 2025, Vol. 31 ›› Issue (5): 581-591.doi: 10.3969/j.issn.1006-9771.2025.05.011
收稿日期:
2025-03-17
修回日期:
2025-03-19
出版日期:
2025-05-25
发布日期:
2025-05-26
通讯作者:
谢青,女,汉族,湖北武汉市人,主任医师。E-mail: ruijin_xq@163.com
作者简介:
赖海芳(1991-),女,汉族,福建福鼎市人,硕士研究生,主要研究方向:神经系统疾病的康复治疗。
基金资助:
LAI Haifang1, LIU Benhui2, CUI Lijun1, HUA Longang1, XIE Qing1()
Received:
2025-03-17
Revised:
2025-03-19
Published:
2025-05-25
Online:
2025-05-26
Contact:
XIE Qing, E-mail: ruijin_xq@163.com
Supported by:
摘要:
目的 分析近10年经颅磁刺激(TMS)在康复领域的研究热点和前沿趋势。
方法 在Web of Science核心合集数据库检索2014年1月至2024年9月TMS在康复领域研究的相关文献,采用CiteSpace 6.4.R1软件进行可视化分析。
结果 共纳入1 065篇文献,年发文量总体趋势逐年递增,中国是发文量最多的国家,哈佛大学是发文量最多的机构,Simone Rossi是被引频次最多的作者。共现频次较高的关键词包括脑卒中、无创脑刺激、可塑性、皮质兴奋性、θ爆发刺激、上肢等。脑机接口是近两年出现的突现词。
结论 近10年TMS在康复领域的研究热度总体呈上升趋势,研究热点聚焦于应用包括TMS在内的多模态联合治疗,改善脑卒中患者的上肢功能、失语症,以及探索大脑神经的可塑性。未来研究需重点关注TMS与脑机接口技术的深度融合,实现TMS治疗的个体化及精准化。
中图分类号:
赖海芳, 刘本慧, 崔立军, 化龙昂, 谢青. 经颅磁刺激在康复领域应用的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(5): 581-591.
LAI Haifang, LIU Benhui, CUI Lijun, HUA Longang, XIE Qing. Application of transcranial magnetic stimulation in rehabilitation field: a bibliometric analysis from 2014 to 2024[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(5): 581-591.
表2
发文量前10的研究机构及其中心性"
排名 | 机构 | 国家 | 发文量/n | 中心性 |
---|---|---|---|---|
1 | Harvard University (including Harvard Medical School) | 美国 | 55 | 0.10 |
2 | Jikei University | 日本 | 29 | 0.06 |
3 | University System of Ohio | 美国 | 28 | 0.04 |
4 | Emory University | 美国 | 24 | 0.12 |
5 | Capital Medical University | 中国 | 19 | 0.15 |
6 | University of Minnesota System | 美国 | 18 | 0.14 |
7 | University of California System | 美国 | 18 | 0.10 |
8 | National Institutes of Health (NIH) | 美国 | 18 | 0.25 |
9 | Sun Yat Sen University | 中国 | 18 | 0.10 |
10 | Spaulding Rehabilitation Hospital | 美国 | 17 | 0.25 |
表3
被引频次前10的作者"
排名 | 作者 | 被引次数/n | 中心性 |
---|---|---|---|
1 | Simone Rossi | 254 | 0.01 |
2 | Jean-Pascal Lefaucheur | 253 | 0.00 |
3 | Paolo M Rossini | 228 | 0.03 |
4 | Cathy M Stinear | 226 | 0.06 |
5 | Eman M Khedr | 214 | 0.00 |
6 | Nobuyuki Takeuchi | 166 | 0.03 |
7 | Vincenzo Di Lazzaro | 159 | 0.09 |
8 | Nagako Murase | 157 | 0.05 |
9 | Felipe Fregni | 154 | 0.00 |
10 | Yingzu Huang | 153 | 0.14 |
表4
排名前10的高频关键词"
排名 | 关键词 | 频次/n | 中心性 |
---|---|---|---|
1 | stroke | 240 | 0.24 |
2 | noninvasive brain stimulation | 180 | 0.19 |
3 | plasticity | 127 | 0.10 |
4 | cortical excitability | 126 | 0.11 |
5 | theta burst stimulation | 124 | 0.09 |
6 | upper limb | 90 | 0.02 |
7 | motor evoked potentials | 85 | 0.04 |
8 | induced movement therapy | 72 | 0.07 |
9 | cortical reorganization | 58 | 0.21 |
10 | aphasia | 30 | 0.12 |
表5
关键词聚类标签及主要关键词"
聚类号 | 聚类标签 | 轮廓值 | 年份 | 关键词 |
---|---|---|---|---|
#0 | deglutition disorders | 0.795 | 2017 | brain computer interface; cognitive-behavioral therapy; assessment |
#1 | cortical excitability | 0.892 | 2016 | animal models; reach to grasp task; periinfarct depolarizations |
#2 | repetitive transcranial magnetic stimulation | 0.851 | 2016 | neural bypass; lesion size; intraoperative neurophysiological monitoring |
#3 | motor imagery | 0.851 | 2015 | electromyography; combined; harnessing neuroplasticity; child |
#4 | quality of life | 0.937 | 2017 | integrative medicine; spinal cord injuries; traditional Chinese medicine |
#5 | functional near-infrared spectroscopy | 0.901 | 2019 | rhythms; prefrontal cortex activity; head injury; information |
#6 | electrical stimulation | 0.918 | 2017 | rehabilitation methods; premotor; repetitive transcranial stimulation |
#7 | upper extremity | 0.842 | 2018 | systems biology; hand movements; survivors; neurotization;motor unit |
#8 | mirror therapy | 0.931 | 2019 | video game;ambulation; short-interval intracortical inhibition |
#9 | corticomotor excitability | 0.952 | 2020 | post-stroke cognitive impairment; sensory stimulation; 3D gait analysis |
#10 | cognitive impairment | 0.885 | 2020 | research trends; sensorimotor resting-state networks; brain health |
#11 | transcranial direct current stimulation | 0.879 | 2016 | nonlesioned hemisphere; oropharyngeal dysphagia; multisensory integration |
#12 | visuospatial neglect | 0.962 | 2017 | cognitive deficits; theta-burst transcranial magnetic stimulation; cerebrovascular disease/accident and stroke |
#13 | ischemic stroke | 0.974 | 2017 | speech and language therapy; sequelae; elderly |
[1] | KLOMJAI W, KATZ R, LACKMY-VALLÉE A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS)[J]. Ann Phys Rehabil Med, 2015, 8(4): 208-213. |
[2] | DIONÍSIO A, DUARTE I C, PATRÍCIO M, et al. Transcranial magnetic stimulation as an intervention tool to recover from language, swallowing and attentional deficits after stroke: a systematic review[J]. Cerebrovasc Dis, 2018, 46(3/4): 178-185. |
[3] | SOMAA F A, DE GRAAF T A, SACK A T. Transcranial magnetic stimulation in the treatment of neurological diseases[J]. Front Neurol, 2022, 20(13): 793253. |
[4] | SYNNESTVEDT M B, CHEN C, HOLMES J H. CiteSpace II: visualization and knowledge discovery in bibliographic databases[J]. AMIA Ann Symp Proc, 2005: 724-728. |
[5] | 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. |
CHEN Y, CHEN C M, LIU Z Y, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Stud Sci Sci, 2015, 33(2): 242-253. | |
[6] | OZEK B, LU Z, POUROMRAN F, et al. Analysis of pain research literature through keyword co-occurrence networks[J]. PLOS Digit Health, 2023, 2(9): e0000331. |
[7] | RADHAKRISHNAN S, ERBIS S, ISAACS J A, et al. Novel keyword co-occurrence network-based methods to foster systematic reviews of scientific literature[J]. PLoS One, 2017, 12(3): e0172778. |
[8] | CURTIN A, TONG S, SUN J, et al. A systematic review of integrated functional near-infrared spectroscopy (fNIRS) and transcranial magnetic stimulation (TMS) studies[J]. Front Neurosci, 2019, 13: 84. |
[9] | CHEN S Y, TSOU M H, CHEN K Y, et al. Impact of repetitive transcranial magnetic stimulation on cortical activity: a systematic review and meta-analysis utilizing functional near-infrared spectroscopy evaluation[J]. J Neuroeng Rehabil, 2024, 21(1): 108. |
[10] | GRANDJEAN J, DEROSIERE G, VASSILIADIS P, et al. Towards assessing corticospinal excitability bilaterally: validation of a double-coil TMS method[J]. J Neurosci Methods, 2018, 293: 162-168. |
[11] |
MOEZZI B, SCHAWORONKOW N, PLOGMACHER L, et al. Simulation of electromyographic recordings following transcranial magnetic stimulation[J]. J Neurophysiol, 2018, 120(5): 2532-2541.
doi: 10.1152/jn.00626.2017 pmid: 29975165 |
[12] | BADOIU A, MITRAN S I, CATALIN B, et al. From molecule to patient rehabilitation: the impact of transcranial direct current stimulation and magnetic stimulation on stroke: a narrative review[J]. Neural Plast, 2023: 5044065. |
[13] | EDWARDS J D, DOMINGUEZ-VARGAS A U, ROSSO C, et al. A translational roadmap for transcranial magnetic and direct current stimulation in stroke rehabilitation: consensus-based core recommendations from the third stroke recovery and rehabilitation roundtable[J]. Neurorehabil Neural Repair, 2024, 38(1): 19-29. |
[14] |
KWAKKEL G, VEERBEEK J M, VAN WEGEN E E, et al. Constraint-induced movement therapy after stroke[J]. Lancet Neurol, 2015, 14(2): 224-234.
doi: 10.1016/S1474-4422(14)70160-7 pmid: 25772900 |
[15] |
KANG Y J, KU J, KIM H J, et al. Facilitation of corticospinal excitability according to motor imagery and mirror therapy in healthy subjects and stroke patients[J]. Ann Rehabil Med, 2011, 35(6): 747-758.
doi: 10.5535/arm.2011.35.6.747 pmid: 22506202 |
[16] | BELLO U M, WINSER S J, CHAN C C H. Role of kinaesthetic motor imagery in mirror-induced visual illusion as intervention in post-stroke rehabilitation[J]. Rev Neurosci, 2020, 31(6): 659-674. |
[17] | 贾杰. "中枢-外周-中枢"闭环康复——脑卒中后手功能康复新理念[J]. 中国康复医学杂志, 2016, 31(11): 1180-1182. |
JIA J. "Central-Periphery-Center" closed loop rehabilitation: a new concept of hand function rehabilitation after stroke[J]. Chin J Rehabil Med, 2016, 31(11): 1180-1182. | |
[18] | TU W J, WANG L D. Special Writing Group of China Stroke Surveillance Report. China stroke surveillance report 2021[J]. Mil Med Res, 2023, 10(1): 33. |
[19] |
RAJSIC S, GOTHE H, BORBA H H, et al. Economic burden of stroke: a systematic review on post-stroke care[J]. Eur J Health Econ, 2019, 20(1): 107-134.
doi: 10.1007/s10198-018-0984-0 pmid: 29909569 |
[20] | DU J, YANG F, HU J, et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments[J]. Neuroimage Clin, 2019, 21: 101620. |
[21] | WANG C, ZENG Q, YUAN Z, et al. Effects of low-frequency (0.5 Hz) and high-frequency (10 Hz) repetitive transcranial magnetic stimulation on neurological function, motor function, and excitability of cortex in ischemic stroke patients[J]. Neurologist, 2023, 28(1): 11-18. |
[22] | KONDO T, YAMADA N, MOMOSAKI R, et al. Comparison of the effect of low-frequency repetitive transcranial magnetic stimulation with that of theta burst stimulation on upper limb motor function in poststroke patients[J]. Biomed Res Int, 2017: 4269435. |
[23] | LONG H, WANG H, ZHAO C, et al. Effects of combining high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke[J]. Restor Neurol Neurosci, 2018, 36(1): 21-30. |
[24] | CHEN S, ZHANG X, CHEN X, et al. The assessment of interhemispheric imbalance using functional near-infrared spectroscopic and transcranial magnetic stimulation for predicting motor outcome after stroke[J]. Front Neurosci, 2023, 17: 1231693. |
[25] | KWON T G, PARK E, KANG C, et al. The effects of combined repetitive transcranial magnetic stimulation and transcranial direct current stimulation on motor function in patients with stroke[J]. Restor Neurol Neurosci, 2016, 34(6): 915-923. |
[26] | CHO J Y, LEE A, KIM M S, et al. Dual-mode noninvasive brain stimulation over the bilateral primary motor cortices in stroke patients[J]. Restor Neurol Neurosci, 2017, 35(1): 105-114. |
[27] | LEE J, PARK E, LEE A, et al. Modulating brain connectivity by simultaneous dual-mode stimulation over bilateral primary motor cortices in subacute stroke patients[J]. Neural Plast, 2018: 1458061. |
[28] | ZHAO Q, LI H, LIU Y, et al. Non-invasive brain stimulation associated mirror therapy for upper-limb rehabilitation after stroke: systematic review and meta-analysis of randomized clinical trials[J]. Front Neurol, 2022, 13: 918956. |
[29] | SHAH-BASAK P, BOUKRINA O, LI X R, et al. Targeted neurorehabilitation strategies in post-stroke aphasia[J]. Restor Neurol Neurosci, 2023, 41(3-4): 129-191. |
[30] |
SHEPPARD S M, SEBASTIAN R. Diagnosing and managing post-stroke aphasia[J]. Expert Rev Neurother, 2021, 21(2): 221-234.
doi: 10.1080/14737175.2020.1855976 pmid: 33231117 |
[31] |
ABO M, KAKUDA W, WATANABE M, et al. Effectiveness of low-frequency rTMS and intensive speech therapy in poststroke patients with aphasia: a pilot study based on evaluation by fMRI in relation to type of aphasia[J]. Eur Neurol, 2012, 68(4): 199-208.
doi: 10.1159/000338773 pmid: 22948550 |
[32] | ZHENG K, XU X, JI Y, et al. Continuous theta burst stimulation-induced suppression of the right fronto-thalamic-cerebellar circuit accompanies improvement in language performance in poststroke aphasia: a resting-state fMRI study[J]. Front Aging Neurosci, 2023, 14: 1079023. |
[33] |
DAMMEKENS E, VANNESTE S, OST J, et al. Neural correlates of high frequency repetitive transcranial magnetic stimulation improvement in post-stroke non-fluent aphasia: a case study[J]. Neurocase, 2014, 20(1): 1-9.
doi: 10.1080/13554794.2012.713493 pmid: 22963195 |
[34] | REN J, REN W, ZHOU Y, et al. Personalized functional imaging-guided rTMS on the superior frontal gyrus for post-stroke aphasia: a randomized sham-controlled trial[J]. Brain Stimul, 2023, 16(5): 1313-1321. |
[35] | HARA T, ABO M, KAKITA K, et al. The effect of selective transcranial magnetic stimulation with functional near-infrared spectroscopy and intensive speech therapy on individuals with post-stroke aphasia[J]. Eur Neurol, 2017, 77(3/4): 186-194. |
[36] | WANG C C, WANG C P, TSAI P Y, et al. Inhibitory repetitive transcranial magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke motor recovery[J]. Restor Neurol Neurosci, 2014, 32(6): 825-835. |
[37] | CAI G, XU J, ZHANG C, et al. Identifying biomarkers related to motor function in chronic stroke: a fNIRS and TMS study[J]. CNS Neurosci Ther, 2024, 30(7): e14889. |
[38] | BEMBENEK J P, KURCZYCH K, KARLI NSKI M, et al. The prognostic value of motor-evoked potentials in motor recovery and functional outcome after stroke: a systematic review of the literature[J]. Funct Neurol, 2012, 27(2): 79-84. |
[39] | MRIDHA M F, DAS S C, KABIR M M, et al. Brain-computer interface: advancement and challenges[J]. Sensors (Basel), 2021, 21(17): 5746. |
[40] | SÁNCHEZ-CUESTA F J, ARROYO-FERRER A, GONZÁL EZ-ZAMORANO Y, et al. Clinical effects of Immersive multimodal BCI-VR training after bilateral neuromodulation with rtms on upper limb motor recovery after stroke. A study protocol for a randomized controlled trial[J]. Medicina (Kaunas), 2021, 57(8): 736. |
[41] | AFONSO M, SÁNCHEZ-CUESTA F, GONZÁLEZ-ZAMORANO Y, et al. Investigating the synergistic neuromodulation effect of bilateral rTMS and VR brain-computer interfaces training in chronic stroke patients[J]. J Neural Eng, 2024, 21(5). doi: 10.1088/1741-2552/ad8836. |
[42] | JOHNSON N N, CAREY J, EDELMAN B J, et al. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke[J]. J Neural Eng, 2018, 15(1): 016009. |
[1] | 易玲, 周静, 梁永胜, 陈雪芬, 曹艳静. 高等职业院校言语听觉康复技术专业校内实训室建设研究[J]. 《中国康复理论与实践》, 2025, 31(5): 529-538. |
[2] | 武爱红, 张青, 吴佳洺, 谢俊霞, 武砀. 胜任力导向和功能定向的中小学融合教育教师培训课程体系构建研究[J]. 《中国康复理论与实践》, 2025, 31(5): 539-547. |
[3] | 曾斌, 郭霜, 叶海燕, 叶金群, 许子菡, 徐光青, 张雷. 基于世界卫生组织胜任力架构的康复治疗学本科实习生研究胜任力调查[J]. 《中国康复理论与实践》, 2025, 31(5): 548-552. |
[4] | 施滨, 徐宁, 周广雪. 镜像疗法应用于脑卒中运动功能康复的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(5): 561-572. |
[5] | 周波, 佘万斌, 向松柏. 人工智能在孤独症谱系障碍儿童诊断与干预中应用的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(5): 573-580. |
[6] | 张青, 吴佳洺, 贾文蓉, 于发友. 融合教育情境下中小学教师胜任力架构与内容:基于RCF和ICF的研究[J]. 《中国康复理论与实践》, 2025, 31(4): 406-414. |
[7] | 关珊, 孙美丽, 管艺, 薛一凡, 钟雨靓, 李心沁. 基于RCF和ICF开发促进残疾大学生职业胜任力发展的课程体系[J]. 《中国康复理论与实践》, 2025, 31(4): 415-422. |
[8] | 刘鹏程, 屈萌艰, 龙黎萍, 王亚琳, 阳明珠, 刘培勇, 周君, 刘静. 多重感觉刺激模态的气电手训练系统联合低频重复经颅磁刺激对脑卒中患者手部运动和触压觉的效果[J]. 《中国康复理论与实践》, 2025, 31(4): 458-465. |
[9] | 朱海丰, 钱桂凤, 丹禹钦, 高静纯, 唐婷婷, 霍明, 谢韶东. 超声引导下骶管注射神经妥乐平和综合康复治疗重度骶丛神经损伤后遗症期的个案报道[J]. 《中国康复理论与实践》, 2025, 31(4): 476-483. |
[10] | 李凡, 林珂瑜, 肖永涛. 孤独症谱系障碍儿童隐喻理解能力与心理推测能力的联系[J]. 《中国康复理论与实践》, 2025, 31(4): 484-489. |
[11] | 沈俊帆, 耿阿燕, 胡文萱, 阚超杰, 王彤, 郭川. 皮质肌肉耦合分析在康复医学领域应用的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(3): 274-286. |
[12] | 冯娟, 李新通, 蔡娇艳, 赵胜国, 潘玮敏. 2015年至2024年本体感觉训练对前交叉韧带损伤康复效果的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(3): 287-295. |
[13] | 朱晨晨, 廖思斯, 刘悦, 潘建明, 朱竹林, 夏币华, 谢莹. 0~3岁发育障碍婴幼儿家庭早期教育和康复的政策架构与支持系统研究[J]. 《中国康复理论与实践》, 2025, 31(3): 324-330. |
[14] | 陈园月, 朱军, 胡晶军, 郭川, 朱兰. 工伤康复的介入时间和康复时间及其相关因素[J]. 《中国康复理论与实践》, 2025, 31(3): 348-355. |
[15] | 陈予东, 杜晓霞, 黄富表, 叶长青, 马琳, 王云雷, 吴晓莉. 胼胝体梗死的康复效果评估:基于功能近红外光谱技术的个案研究[J]. 《中国康复理论与实践》, 2025, 31(3): 365-372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|