[1] |
HURTTE E, YOUNG J, GYAWALI C P. The dysphagia[J]. Primary Care, 2023, 50(3): 325-338.
|
[2] |
LONDHE C, AGRAWAL A, PEDNEKAR S, et al. Swallowing dysfunction after acute stroke: the incidence, predictors and outcome[J]. J Assoc Physicians India, 2023, 71(8): 11-12.
doi: 10.59556/japi.71.0301
pmid: 37651239
|
[3] |
EL HALABI M, ARWANI R, PARKMAN H P. Dysphagia in neurological disorders[J]. Semin Neurol, 2023, 43(4): 530-539.
doi: 10.1055/s-0043-1771458
pmid: 37579785
|
[4] |
HAJIPOUR M, SOBHANI-RAD D, ZAINAEE S, et al. Dysphagia following cerebellar stroke: analyzing the contribution of the cerebellum to swallowing function[J]. Front Neurol, 2023, 14: 1276243.
|
[5] |
HUANG L, WANG Y L, SUN J K, et al. Incidence and risk factors for dysphagia following cerebellar stroke: a retrospective cohort study[J]. Cerebellum, 2024, 23(4): 1293-1303.
|
[6] |
VAITHEESHWARI R, YEH S C, WU E HK, et al. The swallowing intelligent assessment system based on tongue strength and surface EMG[J]. IEEE Sens J, 2023, 23(15): 17310-17318.
|
[7] |
YOON J, BAEK S, JANG Y, et al. Malnutrition and associated factors in acute and subacute stroke patients with dysphagia[J]. Nutrients, 2023, 15(17): 3739.
|
[8] |
GETIE A, AYALNEH M, BIMEREW M, et al. Aspiration pneumonia among stroke patients in Ethiopia: systematic review and meta-analysis[J]. Clin Epidemiol Glob Health, 2024, 28: 101707.
|
[9] |
CIMINI C, MOREAU S. Management of aspiration risk in stroke[J]. Crit Care Nurs Clin N Am, 2023, 35(1): 17-29.
|
[10] |
CHEN W C, LIN C W, WU M N, et al. Consistencies among miscellaneous scales for evaluation of post-stroke dysphagia[J]. Eur Arch Otorhinolaryngol, 2023, 280(10): 4561-4567.
|
[11] |
LIU Z C, CHENG J L, TAN C, et al. Pharyngeal cavity electrical stimulation-assisted swallowing for post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled studies[J]. Dysphagia, 2024, 39(4): 541-551.
|
[12] |
STEELE C M, BAYLEY M T, BOHN M K, et al. Research article reference values for videofluoroscopic measures of swallowing: an update[J]. J Speech Lang Hear Res, 2023, 66(10): 3804-3824.
|
[13] |
LEE J, AHN H J, KANG M S, et al. Assessment of vocal fold movement through anterior-posterior view of videofluoroscopic swallowing study[J]. Laryngoscope Investig Otolaryngol, 2023, 8(5): 1319-1323.
doi: 10.1002/lio2.1147
pmid: 37899859
|
[14] |
INAMOTO Y, UEHA R, GONZALEZ F M. Emerging dysphagia technologies: swallowing CT[J]. Curr Otorhinolaryngol Rep, 2023, 11(2): 154-160.
|
[15] |
SUTO A, UEHA R, OGURA T, et al. Swallowing computed tomography and virtual reality as novel imaging modalities for the diagnosis of clicking larynx: two case reports[J]. Auris Nasus Larynx, 2023, 50(3): 468-472.
|
[16] |
JUNG J S, JEON H, OH B M, et al. Clinical and swallowing characteristics related with respiratory infection in Parkinsonism patients[J]. Ann Rehabil Med, 2023, 47(2): 138-146.
doi: 10.5535/arm.22152
pmid: 37137571
|
[17] |
RUAN X, DAI M, CHEN Z, et al. Temporal micro-action localization for videofluoroscopic swallowing study[J]. IEEE J Biomed Health Inform, 2023, 27(12): 5904-5913.
|
[18] |
CHOU Y, WANG L W, LIN C J, et al. Evaluation of feeding difficulties using videofluoroscopic swallow study and swallowing therapy in infants and children[J]. Pediatr Neonatol, 2023, 64(5): 547-553.
doi: 10.1016/j.pedneo.2022.11.010
pmid: 36849324
|
[19] |
CUI Q J, WEI B, HE Y, et al. Findings of a videofluoroscopic swallowing study in patients with dysphagia[J]. Front Neurol, 2023, 14: 1213491.
|
[20] |
MORIYAMA T, TOKUNAGA M, OCHI M, et al. Negative impact of computed tomography-based low skeletal muscle mass on swallowing recovery in patients with post-stroke dysphagia[J]. Clin Neurol Neurosurg, 2023, 229: 107760.
|
[21] |
INAMOTO Y, GONZALEZ F M, SAITOH E. Timing of true vocal cords closure for safe swallowing: a review of 5 studies using 3D analysis using computerized tomography (CT)[J]. Dysphagia, 2024, 39(3): 313-320.
|
[22] |
INAMOTO Y, SAITOH E, AIHARA K, et al. Effect of the effortful swallow on pharyngeal cavity volume: kinematic analysis in three dimensions using 320-row area detector computed tomography[J]. Dysphagia, 2023, 38(4): 1138-1145.
doi: 10.1007/s00455-022-10539-w
pmid: 36609563
|
[23] |
KOCHI K, SEI H, TANABE Y, et al. The dynamics of deglutition during head rotation using dynamic 320-row area detector computed tomography[J]. Laryngoscope Investig Otolaryngol, 2023, 8(3): 746-753.
doi: 10.1002/lio2.1082
pmid: 37342115
|
[24] |
KAMIYA T, TOYAMA Y, HANYU K, et al. Newtonian and non-Newtonian food bolus behaviors obtained from validated swallowing simulator based on moving particle simulation[J]. Food Sci Technol Res, 2023, 29(5): 385-402.
|
[25] |
LIU S H, QIAO D L, CHENG Z H, et al. Towards designing dysphagia foods: recent advances in influencing factors and computer modeling for the swallowing of thickened fluids[J]. Trends Food Sci Technol, 2023, 137: 17-30.
|
[26] |
KAMIYA T, TOYAMA Y, HANYU K, et al. Visualization of aspiration due to changes in rheological and tribological parameters using a three-dimensional swallowing simulator[J]. Nihon Reoroji Gakkaishi, 2023, 51(3): 149-156.
|
[27] |
SAAB R, BALACHANDAR A, MAHDI H, et al. Machine-learning assisted swallowing assessment: a deep learning-based quality improvement tool to screen for post-stroke dysphagia[J]. Front Neurosci, 2023, 17: 1302132.
|
[28] |
ADEPU D, RAMACHANDRAN P. A corrected transport-velocity formulation for fluid and structural mechanics with SPH[J]. Comput Part Mech, 2024, 11(1): 425-445.
|
[29] |
HO A K, TSOU L, GREEN S, et al. A 3D swallowing simulation using smoothed particle hydrodynamics[J]. Comput Methods Biomech Biomed Engin Imaging Vis, 2014, 2(4): 237-244.
|
[30] |
YUAN Z C, JIAN Z, ENHUA W. A particle-based method for granular flow simulation[J]. Sci China Inf Sci, 2012, 55(5): 1062-1072
|
[31] |
WANG J, HO A K, PAPADOPOULOS N G, et al. Simulated volume loss in the base of tongue in a virtual swallowing model[J]. Comput Methods Biomech Biomed Eng Imaging Vis, 2019, 7(4): 389-395.
|
[32] |
ILEGBUSI O J, KURUPPUMULLAGE N, SILVERMAN E, et al. Mathematical modelling of tongue deformation during swallow in patients with head and neck cancer[J]. Math Comput Model Dyn Syst, 2016, 22(6): 569-583.
|
[33] |
MITANI A, MURAMATSU M. Development of human tongue model for mealtime assistant training using oral care simulation model[J]. Int J Autom Tech, 2019, 13(4): 499-505.
|
[34] |
CALKA M, PERRIER P, OHAYON J, et al. Machine-learning based model order reduction of a biomechanical model of the human tongue[J]. Comput Methods Programs Biomed, 2021, 198: 105786.
|
[35] |
HASHIMOTO T, URABE M, CHEE S F, et al. Development of a musculoskeletal model of hyolaryngeal elements for understanding pharyngeal swallowing mechanics[J]. Appl Sci, 2020, 10(18): 6276.
|
[36] |
HADDAD S M H, DHALIWAL S S, ROTENBERG B W, et al. Estimation of the hyperelastic parameters of fresh human oropharyngeal soft tissues using indentation testing[J]. J Mech Behav Biomed Mater, 2020, 108: 103789.
|
[37] |
BUCHAILLARD S, PERRIER P, PAYAN Y. A biomechanical model of cardinal vowel production: muscle activations and the impact of gravity on tongue positioning[J]. J Acoust Soc Am, 2009, 126(4): 2033-2051.
doi: 10.1121/1.3204306
pmid: 19813813
|
[38] |
DANG J, HONDA K. Construction and control of a physiological articulatory model[J]. J Acoust Soc Am, 2004, 115(2): 853-870.
pmid: 15000197
|
[39] |
CHENG S, GANDEVIA S C, GREEN M, et al. Viscoelastic properties of the tongue and soft palate using MR elastography[J]. J Biomech, 2011, 44(3): 450-454.
doi: 10.1016/j.jbiomech.2010.09.027
pmid: 21040923
|
[40] |
GERARD J M, OHAYON J, LUBOZ V, et al. Non-linear elastic properties of the lingual and facial tissues assessed by indentation technique[J]. Med Eng Phys, 2005, 27(10): 884-892.
|
[41] |
PELTERET J P V, REDDY B D. Computational model of soft tissues in the human upper airway[J]. Int J Numer Meth Biomed, 2012, 28(1): 111-132.
|
[42] |
PANDEY S, TATER P. Post-stroke lingual dystonia: clinical description and neuroimaging findings[J]. Tremor Other Hyperkinetic Mov, 2019, 8(0): 610.
|
[43] |
LAZARUS C L, HUSAINI H, JACOBSON A S, et al. Development of a new lingual range-of-motion assessment scale: normative data in surgically treated oral cancer patients[J]. Dysphagia, 2014, 29(4): 489-499.
doi: 10.1007/s00455-014-9534-9
pmid: 24810704
|