[1] |
GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10): 795-820.
|
[2] |
World Stroke Organization. World Stroke Organization Annual Report 2018[R/OL]. (2018-03-10)[2025-03-13]. https://www.world-stroke.org/assets/downloads/Annual_Report_2018_online_fnal_COMPRESSED.pdf.
|
[3] |
FEIGIN V L, BRAININ M, NORRVING B, et al. World Stroke Organization: Global Stroke Fact Sheet 2025[J]. Int J Stroke, 2025, 20(2): 132-144.
doi: 10.1177/17474930241308142
pmid: 39635884
|
[4] |
BICKENBACH J, OFFICER A, SHAKESPEARE T, et al. International perspectives on spinal cord injury: summary[R]. Geneva: World Health Organization, 2013.
|
[5] |
FEIGIN V L, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29.
doi: 10.1177/17474930211065917
pmid: 34986727
|
[6] |
DIPIRO N D, EMBRY A E, FRITZ S L, et al. Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury[J]. Spinal Cord, 2016, 54(9): 675-681.
doi: 10.1038/sc.2015.212
pmid: 26666508
|
[7] |
MEHRHOLZ J, THOMAS S, ELSNER B. Treadmill training and body weight support for walking after stroke[J]. Cochrane Database Syst Rev, 2017, 8(8): Cd002840.
|
[8] |
林星茹, 赵盈喆, 刘亚, 等. 东亚地区物理治疗师配置、教育培训与职业准入体系的比较研究[J]. 中国康复理论与实践, 2022, 28(11): 1334-1341.
doi: 10.3969/j.issn.1006-9771.2022.11.013
|
|
LIN X R, ZHAO Y Z, LIU Y, et al. Comparative study of physical therapist allocation, education and training, and professional accreditation system in East Asia[J]. Chin J Rehabil Theory Pract, 2022, 28(11): 1334-1341.
|
[9] |
ALQAHTANI M S, COOPER G, DIVER C, et al. Exoskeletons for lower limb applications: a review[M]//BÁRTOLO P J, BIDANDA B. Bio-materials and prototyping applications in medicine. Cham: Springer International Publishing, 2021: 139-164.
|
[10] |
GORGEY A S, WADE R, SUMRELL R, et al. Exoskeleton training may improve level of physical activity after spinal cord injury: a case series[J]. Top Spinal Cord Inj Rehabil, 2017, 23(3): 245-255.
doi: 10.1310/sci16-00025
pmid: 29339900
|
[11] |
MEHRHOLZ J, THOMAS S, WERNER C, et al. Electromechanical-assisted training for walking after stroke[J]. Cochrane Database Syst Rev, 2017, 5(4): CD006185.
|
[12] |
SONG K J, CHUN M H, LEE J, et al. The effect of robot-assisted gait training on cortical activation in stroke patients: a functional near-infrared spectroscopy study[J]. NeuroRehabilitation, 2021, 49(1): 65-73.
doi: 10.3233/NRE-210034
pmid: 33998555
|
[13] |
PAGE M J, MCKENZIE J E, BOSSUYT P M, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews[J]. BMJ, 2021, 372(29): n71.
|
[14] |
CASHIN A G, MCAULEY J H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale[J]. J Physiother, 2020, 66(1): 59.
doi: S1836-9553(19)30092-X
pmid: 31521549
|
[15] |
LI Y, FAN T, QI Q, et al. Efficacy of a novel exoskeletal robot for locomotor rehabilitation in stroke patients: a multi-center, non-inferiority, randomized controlled trial[J]. Front Aging Neurosci, 2021, 23(13): 706569c.
|
[16] |
HAO M, FANG Q, WU B, et al. Rehabilitation effect of intelligent rehabilitation training system on hemiplegic limb spasms after stroke[J]. Open Life Sci, 2023, 18(1): 20220724.
|
[17] |
TARNACKA B, KORCZYŃSKI B, FRASUŃSKA J. Impact of robotic-assisted gait training in subacute spinal cord injury patients on outcome measure[J]. Diagnostics (Basel), 2023, 13(11): 1966.
|
[18] |
MENG G, MA X, CHEN P, et al. Effect of early integrated robot-assisted gait training on motor and balance in patients with acute ischemic stroke: a single-blinded randomized controlled trial[J]. Ther Adv Neurol Disord, 2022, 15(3): 17562864221123195.
|
[19] |
MIDIK M, PAKER N, BUĞDAYCI D, et al. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury[J]. Turk J Phys Med Rehabil, 2020, 66(1): 54-59.
|
[20] |
POURNAJAF S, CALABRÒ R S, NARO A, et al. Robotic versus conventional overground gait training in subacute stroke survivors: a multicenter controlled clinical trial[J]. J Clin Med, 2023, 12(2): 439.
|
[21] |
ELMAS BODUR B, ERDOĞANOĞLU Y, ASENA SEL S. Effects of robotic-assisted gait training on physical capacity, and quality of life among chronic stroke patients: a randomized controlled study[J]. J Clin Neurosci, 2024, 120(2): 129-137.
|
[22] |
GUPTA A, PRAKASH N B, SANNYASI G, et al. Effect of overground gait training with 'Mobility Assisted Robotic System-MARS' on gait parameters in patients with stroke: a pre-post study[J]. BMC Neurol, 2023, 23(1): 296.
doi: 10.1186/s12883-023-03357-6
pmid: 37558991
|
[23] |
CALABRÒ R S, BILLERI L, CIAPPINA F, et al. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation[J]. Expert Rev Med Devices, 2022, 19(1): 83-95.
|
[24] |
CHEN S C, KANG J H, PENG C W, et al. Adjustable parameters and the effectiveness of adjunct robot-assisted gait training in individuals with chronic stroke[J]. Int J Environ Res Public Health, 2022, 19(13): 8186.
|
[25] |
FIROUZI V, SEYFARTH A, SONG S, et al. Biomechanical models in the lower-limb exoskeletons development: a review[J]. J Neuroeng Rehabil, 2025, 22(1): 12.
doi: 10.1186/s12984-025-01556-5
pmid: 39856714
|
[26] |
RV M, RAKSHIT S. Deep reinforcement learning based control of lower limb exoskeleton[C]. Yokohama, Japan:2024 International Joint Conference on Neural Networks (IJCNN), 2024.
|