《中国康复理论与实践》 ›› 2025, Vol. 31 ›› Issue (8): 914-921.doi: 10.3969/j.issn.1006-9771.2025.08.007

• 循证研究 • 上一篇    下一篇

外骨骼机器人辅助步态训练对脑卒中和脊髓损伤下肢功能康复效果的系统综述

王晓锋1, 胡梦巧1, 汪嫣2, 魏坤1(), 徐文竹1, 任丹1, 马晔3   

  1. 1.宁波市康复医院,浙江宁波市 315100
    2.宁波市海曙区人民医院康复医学科,浙江宁波市315100
    3.宁波大学体育学院大健康研究院,浙江宁波市 315211
  • 收稿日期:2025-07-11 出版日期:2025-08-25 发布日期:2025-09-01
  • 通讯作者: 魏坤(1983-),男,汉族,山东潍坊市人,工程师,硕士研究生导师,主要研究方向:医工交叉融合与工程技术试用与开发,E-mail: 13685852511@163.com。
  • 作者简介:王晓锋(1987-),男,汉族,浙江德清县人,主管康复治疗师,主要研究方向:运动康复治疗。
  • 基金资助:
    宁波市鄞州区科技项目(2025AS023);宁波市公益项目(2024S152)

Effect of exoskeleton robot-assisted gait training on lower limb function after stroke and spinal cord injury: a systematic review

WANG Xiaofeng1, HU Mengqiao1, WANG Yan2, WEI Kun1(), XU Wenzhu1, REN Dan1, MA Ye3   

  1. 1. Ningbo Rehabilitation Hospital, Ningbo, Zhejiang 315100, China
    2. Department of Rehabilitation Medicine, People's Hospital of Haishu District, Ningbo, Zhejiang 315100, China
    3. Research Academy of Grand Health, Ningbo University, Ningbo, Zhejiang 315211, China
  • Received:2025-07-11 Published:2025-08-25 Online:2025-09-01
  • Supported by:
    Ningbo Yinzhou District Science and Technology Project(2025AS023);Ningbo Public Welfare Project(2024S152)

摘要:

目的 系统评价下肢外骨骼机器人辅助步态训练(RAGT)对脑卒中和脊髓损伤患者运动功能、步行能力和日常生活活动能力的康复效果,并探讨不同技术类型与控制策略的临床价值。

方法 基于PRISMA指南,检索2020年至2024年Scopus、Web of Science、PubMed、Cochrane Library和中国知网中相关随机对照试验。采用PEDro量表评估文献质量,综合分析RAGT在步行能力、平衡功能、下肢肌力和功能独立性等方面的疗效。

结果 最终纳入8项研究,涉及702例参与者,主要来自中国、意大利、印度、土耳其和波兰等,研究设计均为随机对照试验。研究对象为成年脑卒中或脊髓损伤患者,涵盖多种亚型;主要发表在老年神经科学、生物科学、医学和运动科学等领域的期刊,发表时间集中在2020年至2024年。干预方式涉及3类下肢外骨骼机器人:基于跑台的系统(末端执行器与外骨骼型)、地面行走式和专用关节与平台式机器人。训练频率每次20~45 min,每天1~2次,每周1~7 d,共2~10周。RAGT显著改善脑卒中和脊髓损伤患者的步态参数和下肢肌力,但在功能独立性上的效果存在异质性。自适应控制策略(如按需辅助)较固定参数模式更优。基于跑台的系统(如Lokomat)和地面外骨骼(如EKSO-GT)各具优势,前者适用于早期康复,后者更促进真实环境适应。

结论 RAGT是脑卒中和脊髓损伤患者步态和下肢功能康复的有效手段,干预效果取决于外骨骼机器人的个别化以及适应性的控制策略和模式的建构,3类下肢外骨骼机器人分别建立了不同的自适应控制模式。在康复训练中,要设计特定的下肢活动任务,并且与下肢外骨骼机器人的自适应活动和控制模式结合。

关键词: 脑卒中, 脊髓损伤, 步态, 下肢运动功能, 外骨骼, 系统综述

Abstract:

Objective To systematically evaluate robot-assisted gait training (RAGT) on motor function, ambulation and activities of daily living of patients after stroke and spinal cord injury (SCI), and to investigate the clinical value of different robotic technologies and control strategies.

Methods In accordance with PRISMA guidelines, relevant randomized controlled trials (RCTs) published between 2020 and 2024 were identified from databases including Scopus, Web of Science, PubMed, Cochrane Library and CNKI. The PEDro scale was used to assess methodological quality, and a comprehensive analysis was performed on the therapeutic effects of RAGT on walking ability, balance, lower limb muscle strength and functional independence.

Results Eight RCTs involving 702 participants were included, originating from countries such as China, Italy, India, Turkey and Poland. The population consisted of adult patients with various subtypes of stroke or SCI. These studies were published in journals across geriatric neuroscience, biosciences, medicine and sports science. Interventions involved three categories of lower limb exoskeleton including treadmill-based systems (end-effector and exoskeleton models), overground exoskeletons and specialized joint/platform-based robots. The training frequency was 20 to 45 minutes a time, once to twice a day, one to seven days a week, for a total of two to ten weeks. RAGT might significant improve gait parameters and lower limb muscle strength, though its impact on functional independence was heterogeneous. Adaptive control strategies (e.g., assist-as-needed) proved superior to fixed-parameter modes. Treadmill-based systems (e.g., Lokomat) were well-suited for early-stage rehabilitation, while overground exoskeletons (e.g., EKSO-GT) better facilitated adaptation to real-world environments.

Conclusion RAGT is an effective modality for improving gait and lower limb function of patients with stroke and SCI. The therapeutic outcome is contingent upon personalized setup of the exoskeleton and the implementation of adaptive control strategies. Different adaptive control modes have been developed for the three main types of lower limb exoskeleton. Rehabilitation training should consider the specific lower limb tasks with the robot's corresponding adaptive movement and control modes.

Key words: stroke, spinal cord injury, gait, lower limb motor function, exoskeleton, systematic review

中图分类号: