《中国康复理论与实践》 ›› 2025, Vol. 31 ›› Issue (10): 1128-1133.doi: 10.3969/j.issn.1006-9771.2025.10.003

• 专题 脑-肢体协同的功能性近红外光谱研究 • 上一篇    下一篇

不同时序经颅直流电刺激结合坐位太极拳云手对健康青年人脑皮质激活的功能性近红外光谱研究

王俊伟1, 许琦1,2(), 王欣欣1, 何毅琪2, 吴心虹2, 张芸2   

  1. 1.厦门医学院临床医学院,福建厦门市 361023
    2.厦门市第五医院,福建厦门市 361101
  • 收稿日期:2025-07-23 修回日期:2025-09-16 出版日期:2025-10-25 发布日期:2025-11-10
  • 通讯作者: 许琦(1974-),女,汉族,福建松溪县人,博士,研究员、医师,主要研究方向:神经康复、骨科康复、运动损伤康复,E-mail: dptqixu@126.com
  • 作者简介:王俊伟(2004-),男,汉族,安徽肥西县人,本科生。
  • 基金资助:
    福建省科技计划项目(2022Y01020084)

Effect of transcranial direct current stimulation combined with seated Taijiquan Yunshou in different sequences on cerebral cortical activation for healthy youths: a functional near-infrared spectroscopy study

WANG Junwei1, XU Qi1,2(), WANG Xinxin1, HE Yiqi2, WU Xinhong2, ZHANG Yun2   

  1. 1. Department of Clinical Medicine, Xiamen Medical College, Xiamen, Fujian 361023, China
    2. The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, China
  • Received:2025-07-23 Revised:2025-09-16 Published:2025-10-25 Online:2025-11-10
  • Contact: XU Qi, E-mail: dptqixu@126.com
  • Supported by:
    Fujian Science and Technology Program(2022Y01020084)

摘要:

目的 观察不同时序经颅直流电刺激(tDCS)与坐位太极拳云手干预组合对健康青年大脑皮质激活的影响。
方法 2024年9月至12月,在厦门市第五医院招募健康青年实习或见习医学生14例,随机交叉完成3种干预:先进行云手训练后,立即给予tDCS(云-电组);先给予tDCS干预后,立即进行云手训练(电-云组);tDCS干预与云手训练同时进行(同步组)。云手为坐位练习,tDCS阳极置于左侧初级运动皮质(M1),阴极置于右侧M1。采用功能性近红外光谱测量感兴趣区氧合血红蛋白(HbO2)浓度的变化。
结果 3例脱落。干预前后有显著性差异的脑区包括:云-电组右前额叶皮质(PFC)的CH3、CH7、CH23通道;电-云组左PFC的CH12通道;同步组左PFC的CH9、CH10、CH25,左感觉运动皮质(SMC)的CH13、CH14,右前运动及辅助运动皮质(PMC)区的CH15和右SMC的CH16等(P < 0.05)。干预后,云-电组双侧PFC、双侧PMC和左SMC的HbO2浓度最高(P < 0.05);除右PFC同步组HbO2浓度降低外,同步组HbO2浓度与电-云组大致相当(P > 0.05)。
结论 脑-肢体协同调控的时序组合是调控脑激活即时模式的关键因素。

关键词: 经颅直流电刺激, 太极拳, 云手, 皮质激活, 时序组合模式, 功能性近红外光谱, 脑-肢体协同调控技术

Abstract:

Objective To compare the effect of transcranial direct current stimulation (tDCS) combined with seated Taijiquan Yunshou in different sequences on brain functional activation in healthy youths.
Methods From September to December, 2024, 14 healthy young medical interns or probationers were recruited from the Fifth Hospital of Xiamen. They randomly completed three interventions in a crossover design: Yunshou training followed immediately by tDCS (Y-S group), tDCS intervention followed immediately by Yunshou training (S-Y group), and simultaneous implementation of tDCS intervention and Yunshou training (Sim group). Yunshou was practiced in a seated position. For tDCS, the anode was placed over the left primary motor cortex (M1), and the cathode over the right M1. Changes in oxyhemoglobin (HbO2) concentration in the regions of interest were measured using functional near-infrared spectroscopy.
Results Three cases dropped down. The brain regions with significant differences before and after intervention included: CH3, CH7 and CH23 of right prefrontal cortex (PFC) in Y-S group; CH12 of left PFC in S-Y group; and CH9, CH10 and CH25 of the left PFC, CH13 and CH14 of the left sensorimotor cortex (SMC), CH15 of the right premotor and supplementary motor cortex (PMC), and CH16 of the right SMC in Sim group (P < 0.05). After intervention, HbO2 concentration was the highest in the bilateral PFC, bilateral PMC and left SMC in the Y-S group (P < 0.05); and it was almost the same between Sim group and S-Y group (P > 0.05), except that of the right PFC decreased in Sim group.
Conclusion The sequential combination of brain-limb integrated regulation is a key factor influencing the immediate cortical activation pattern.

Key words: transcranial direct current stimulation, Taijiquan, Yunshou, cortical activation, sequential combination pattern, functional near-infrared spectroscopy, brain-limb coordinated rehabilitation

中图分类号: