《中国康复理论与实践》 ›› 2021, Vol. 27 ›› Issue (7): 755-759.doi: 10.3969/j.issn.1006-9771.2021.07.003
收稿日期:
2020-02-14
修回日期:
2021-05-12
出版日期:
2021-07-25
发布日期:
2021-07-28
通讯作者:
胡军
E-mail:jasonhwu@126.com
作者简介:
于小明(1984-),男,汉族,上海市人,硕士研究生,主要研究方向:神经系统疾病康复和物理治疗。|胡军(1968-),男,汉族,博士,副教授,主要研究方向:神经系统疾病康复及老年康复研究。
基金资助:
YU Xiao-ming1,2,HUANG Shang-jun3,QIAO Jun4,LU Yan2,HU Jun1()
Received:
2020-02-14
Revised:
2021-05-12
Published:
2021-07-25
Online:
2021-07-28
Contact:
HU Jun
E-mail:jasonhwu@126.com
Supported by:
摘要:
目的 观察股四头肌痉挛对脑卒中患者跨越障碍的影响。
方法 2017年10月至2018年11月,招募脑卒中患者20例,根据股四头肌改良Ashworth量表(MAS)分级分为痉挛组(n = 11)和无痉挛组(n = 9)。采用三维运动捕捉系统和测力台同步采集患者跨越高15 cm障碍时的步长、步宽、前后和内外质心速度、健侧足尖-障碍物距离、患侧足尖-障碍物垂直间距、障碍后足跟-障碍物距离、双支撑和健患侧摆动期百分比等。
结果 在患侧和健侧脚尖位于障碍正上方时,痉挛组前后方向质心速度均明显小于无痉挛组(F > 10.006, P < 0.01);痉挛组足尖-障碍物距离和障碍前步长均明显小于无痉挛组(F > 13.456, P < 0.01);痉挛组障碍前双支撑百分比和障碍后步宽大于无痉挛组(F > 4.533, P < 0.05)。
结论 股四头肌痉挛导致脑卒中患者跨越障碍时持更谨慎的策略,效率降低。
中图分类号:
于小明,黄尚军,乔钧,陆琰,胡军. 股四头肌痉挛对脑卒中患者跨越障碍的影响[J]. 《中国康复理论与实践》, 2021, 27(7): 755-759.
YU Xiao-ming,HUANG Shang-jun,QIAO Jun,LU Yan,HU Jun. Influences of Quadriceps Femoris Spasticity on Obstacle Crossing for Stroke Patients[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(7): 755-759.
表1
两组受试者基线特征比较"
特征 | 无痉挛组(n = 9) | 痉挛组(n = 11) | χ2/F值 | P值 |
---|---|---|---|---|
性别(男/女, n) | 6/3 | 9/2 | 0.617 | 0.396 |
年龄(岁) | 61.33±7.53 | 60.02±8.79 | 0.129 | 0.724 |
身高(cm) | 168.78±3.89 | 171.09±6.89 | 0.799 | 0.383 |
体质量(kg) | 67.39±3.18 | 73.81±8.76 | 4.316 | 0.052 |
卒中类型(梗死/出血, n) | 5/4 | 9/2 | 0.336 | 0.217 |
病程(d) | 280.67±187.82 | 320.01±195.29 | 0.208 | 0.654 |
MAS | 0.00±0.00 | 1.45±0.47 | 84.637 | < 0.001 |
MMSE | 28.11±2.52 | 27.55±2.02 | 0.311 | 0.584 |
Fugl-Meyer评定量表下肢部分 | 28.44±2.55 | 25.82±6.78 | 1.201 | 0.288 |
Berg平衡量表 | 48.89±3.79 | 45.73±3.72 | 3.519 | 0.077 |
表2
两组跨越障碍运动参数比较"
参数 | 无痉挛组(n= 9) | 痉挛组(n= 11) | F值 | P值 |
---|---|---|---|---|
COMAPV1 (m/s) | 0.47±0.17 | 0.25±0.09 | 12.542 | 0.002 |
COMMLV1 (m/s) | 0.02±0.01 | 0.02±0.02 | 0.082 | 0.778 |
COMAPV2 (m/s) | 0.53±0.15 | 0.35±0.11 | 10.006 | 0.005 |
COMMLV2 (m/s) | 0.04±0.03 | 0.04±0.04 | 0.098 | 0.758 |
TOD (m) | 0.22±0.07 | 0.12±0.04 | 13.456 | 0.002 |
TOC (m) | 0.13±0.04 | 0.11±0.08 | 0.211 | 0.651 |
HOD (m) | 0.10±0.06 | 0.07±0.05 | 1.905 | 0.184 |
障碍前步长(m) | 0.48±0.03 | 0.17±0.06 | 216.380 | < 0.001 |
障碍后步长(m) | 0.34±0.19 | 0.21±0.17 | 2.787 | 0.112 |
障碍前步宽(m) | 0.08±0.06 | 0.10±0.04 | 0.608 | 0.446 |
障碍后步宽(m) | 0.11±0.04 | 0.15±0.04 | 4.533 | 0.047 |
障碍前双支撑期(%) | 9.23±2.33 | 13.34±14.62 | 5.381 | 0.032 |
患侧摆动期(%) | 46.79±4.37 | 44.67±4.86 | 1.031 | 0.323 |
障碍中双支撑期(%) | 8.18±2.50 | 10.60±4.35 | 2.180 | 0.157 |
健侧摆动期(%) | 35.80±7.65 | 31.40±7.46 | 1.681 | 0.211 |
[1] | BALASUBRAMANIAN C K, CLARK D J, FOX E J. Walking adaptability after a stroke and its assessment in clinical settings[J]. Stroke Res Treat, 2014, 2014:591013. |
[2] |
HAN J T, LEE J H, FELL D W. Kinematic head and trunk strategies used by hemiplegic stroke patients crossing over obstacles of different heights[J]. J Phys Ther Sci, 2017, 29(1):109-111.
doi: 10.1589/jpts.29.109 |
[3] |
HUANG S J, YU X M, WANG K, et al. Short-step adjustment and proximal compensatory strategies adopted by stroke survivors with knee extensor spasticity for obstacle crossing[J]. Front Bioeng Biotechnol, 2020, 8:939.
doi: 10.3389/fbioe.2020.00939 |
[4] | 孟站领, 张庆来, 刘昌亚. 社区不同跌倒风险老年人跨越障碍的步态运动学特征分析[J]. 中国康复理论与实践, 2020, 26(1):110-114. |
MENG Z L, ZHANG Q L, LIU C Y. Gait characteristics in old people with various risks of falling as obstacle crossing in community[J]. Chin J Rehabil Theory Pract, 2020, 26(1):110-114. | |
[5] |
LI S, LIU J, BHADANE M, et al. Activation deficit correlates with weakness in chronic stroke: evidence from evoked and voluntary EMG recordings[J]. Clin Neurophysiol, 2014, 125(12):2413-2417.
doi: 10.1016/j.clinph.2014.03.019 |
[6] |
GORST T, ROGERS A, MORRISON S C, et al. The prevalence, distribution, and functional importance of lower limb somatosensory impairments in chronic stroke survivors: a cross sectional observational study[J]. Disabil Rehabil, 2019, 41(20):2443-2450.
doi: 10.1080/09638288.2018.1468932 |
[7] |
TRUMBOWER R D, RAVICHANDRAN V J, KRUTKY M A, et al. Contributions of altered stretch reflex coordination to arm impairments following stroke[J]. J Neurophysiol, 2010, 104(6):3612-3624.
doi: 10.1152/jn.00804.2009 |
[8] |
SALEHI R, MOFATEH R, MEHRAVAR M, et al. Comparison of the lower limb inter-segmental coordination during walking between healthy controls and people with multiple sclerosis with and without fall history[J]. Mult Scler Relat Disord, 2020, 41:102053.
doi: 10.1016/j.msard.2020.102053 |
[9] |
CHEN N, XIAO X, HU H, et al. Identify the alteration of balance control and risk of falling in stroke survivors during obstacle crossing based on kinematic analysis[J]. Front Neurol, 2019, 10:813.
doi: 10.3389/fneur.2019.00813 |
[10] |
DEN OTTER A R, GEURTS A C, DE HAART M, et al. Step characteristics during obstacle avoidance in hemiplegic stroke[J]. Exp Brain Res, 2005, 161(2):180-192.
doi: 10.1007/s00221-004-2057-0 |
[11] |
SUN R, CUI C, SHEA J B. Aging effect on step adjustments and stability control in visually perturbed gait initiation[J]. Gait Posture, 2017, 58:268-273.
doi: 10.1016/j.gaitpost.2017.08.013 |
[12] |
MALIK R N, COTE R, LAM T. Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury[J]. J Neurophysiol, 2017, 117(1):36-46.
doi: 10.1152/jn.00169.2016 |
[13] |
SAID C M, GOLDIE P A, CULHAM E, et al. Control of lead and trail limbs during obstacle crossing following stroke[J]. Phys Ther, 2005, 85(5):413-427.
doi: 10.1093/ptj/85.5.413 |
[14] |
SAID C M, GALEA M, LYTHGO N. Obstacle crossing performance does not differ between the first and subsequent attempts in people with stroke[J]. Gait Posture, 2009, 30(4):455-458.
doi: 10.1016/j.gaitpost.2009.07.004 |
[15] |
LU T W, YEN H C, CHEN H L, et al. Symmetrical kinematic changes in highly functioning older patients post-stroke during obstacle-crossing[J]. Gait Posture, 2010, 31(4):511-516.
doi: 10.1016/j.gaitpost.2010.02.012 |
[16] |
MACLELLAN M J, RICHARDS C L, FUNG J, et al. Comparison of kinetic strategies for avoidance of an obstacle with either the paretic or non-paretic as leading limb in persons post stroke[J]. Gait Posture, 2015, 42(3):329-334.
doi: 10.1016/j.gaitpost.2015.06.191 |
[17] | 陈娜, 毛玉瑢, 黄东锋, 等. 脑卒中患者跨越不同高度障碍物的运动学分析[J]. 中国康复医学杂志, 2015, 30(4):334-338. |
CHEN N, MAO Y R, HUANG D F, et al. Kinematic analysis of crossing obstacle with different height following stroke[J]. Chin J Rehabil Med, 2015, 30(4):334-338. | |
[18] |
GUPTA A D, CHU W H, HOWELL S, et al. A systematic review: efficacy of Botulinum toxin in walking and quality of life in post-stroke lower limb spasticity[J]. Syst Rev, 2018, 7(1):1.
doi: 10.1186/s13643-017-0670-9 |
[19] |
CABANAS-VALDES R, CALVO-SANZ J, URRUTIA G, et al. The effectiveness of extracorporeal shock wave therapy to reduce lower limb spasticity in stroke patients: a systematic review and meta-analysis[J]. Top Stroke Rehabil, 2020, 27(2):137-157.
doi: 10.1080/10749357.2019.1654242 |
[20] |
YANG J M, KIM S Y. Correlation of knee proprioception with muscle strength and spasticity in stroke patients[J]. J Phys Ther Sci, 2015, 27(9):2705-2708.
doi: 10.1589/jpts.27.2705 |
[21] | RAHIMZADEH KHIABANI R, MOCHIZUKI G, ISMAIL F, et al. Impact of spasticity on balance control during quiet standing in persons after stroke[J]. Stroke Res Treat, 2017, 2017:6153714. |
[22] |
SINGER J C, MANSFIELD A, DANELLS C J, et al. The effect of post-stroke lower-limb spasticity on the control of standing balance: inter-limb spatial and temporal synchronisation of centres of pressure[J]. Clin Biomech (Bristol, Avon), 2013, 28(8):921-926.
doi: 10.1016/j.clinbiomech.2013.07.010 |
[23] |
SINGER J C, MOCHIZUKI G. Post-stroke lower limb spasticity alters the interlimb temporal synchronization of centre of pressure displacements across multiple timescales[J]. IEEE Trans Neural Syst Rehabil Eng, 2015, 23(5):786-795.
doi: 10.1109/TNSRE.7333 |
[24] | 吴逊. 全国第四届脑血管病学术会议纪要[J]. 卒中与神经疾病, 1997, 4(2):51-55. |
WU X. Stroke Nerv Dis, 1997, 4(2):51-55. | |
[25] | CASTILLO J. Deteriorating stroke: diagnostic criteria, predictors, mechanisms and treatment[J]. Cerebrovasc Dis, 1999, 9(3):1-8. |
[26] |
MURAYAMA N, OTA K, MATSUNAGA Y, et al. Evaluating depression in cognitively healthy elderly people by using Mini-Mental State Examination[J]. Psychogeriatrics, 2020, 20(1):96-103.
doi: 10.1111/psyg.v20.1 |
[27] |
ZURAWSKI E, BEHM K, DUNLAP C, et al. Interrater reliability of the modified Ashworth Scale with standardized movement speeds: a pilot study[J]. Physiother Can, 2019, 71(4):348-354.
doi: 10.3138/ptc-2018-0086 |
[28] |
ANSARI N N, NAGHDI S, YOUNESIAN P, et al. Inter- and intrarater reliability of the modified Ashworth Scale in patients with knee extensor poststroke spasticity[J]. Physiother Theory Pract, 2008, 24(3):205-213.
doi: 10.1080/09593980701523802 |
[29] |
DOWNS S. The Berg Balance Scale[J]. J Physiother, 2015, 61(1):46.
doi: 10.1016/j.jphys.2014.10.002 |
[30] | HERNANDEZ E D, FORERO S M, GALEANO C P, et al. Intra- and interrater reliability of Fugl-Meyer Assessment of lower extremity early after stroke[J]. Braz J Phys Ther, 2020, 12:10. |
[31] |
TEIXEIRA-SALMELA L F, NADEAU S, MILOT M H, et al. Effects of cadence on energy generation and absorption at lower extremity joints during gait[J]. Clin Biomech (Bristol, Avon), 2008, 23(6):769-778.
doi: 10.1016/j.clinbiomech.2008.02.007 |
[32] |
RAFFEGEAU T E, KELLAHER G K, TERZA M J, et al. Older women take shorter steps during backwards walking and obstacle crossing[J]. Exp Gerontol, 2019, 122:60-66.
doi: 10.1016/j.exger.2019.04.011 |
[33] |
SAID C M, GALEA M P, LYTHGO N. People with stroke who fail an obstacle crossing task have a higher incidence of falls and utilize different gait patterns compared with people who pass the task[J]. Phys Ther, 2013, 93(3):334-344.
doi: 10.2522/ptj.20120200 |
[34] |
VISTAMEHR A, BALASUBRAMANIAN C K, CLARK D J, et al. Dynamic balance during walking adaptability tasks in individuals post-stroke[J]. J Biomech, 2018, 74:106-115.
doi: 10.1016/j.jbiomech.2018.04.029 |
[35] |
SAID C M, GOLDIE P A, PATLA A E, et al. Effect of stroke on step characteristics of obstacle crossing[J]. Arch Phys Med Rehabil, 2001, 82(12):1712-1719.
doi: 10.1053/apmr.2001.26247 |
[36] |
SAID C M, GOLDIE P A, PATLA A E, et al. Balance during obstacle crossing following stroke[J]. Gait Posture, 2008, 27(1):23-30.
doi: 10.1016/j.gaitpost.2006.12.009 |
[37] | MA C, CHEN N, MAO Y, et al. Alterations of muscle activation pattern in stroke survivors during obstacle crossing[J]. Front Neurol, 2017, 8:70. |
[38] |
KHANMOHAMMADI R, TALEBIAN S, HADIAN M R, et al. Preparatory postural adjustments during gait initiation in healthy younger and older adults: neurophysiological and biomechanical aspects[J]. Brain Res, 2015, 1629:240-249.
doi: 10.1016/j.brainres.2015.09.039 |
[39] |
TISSERAND R, ROBERT T, CHABAUD P, et al. Elderly fallers enhance dynamic stability through anticipatory postural adjustments during a choice stepping reaction time[J]. Front Human Neurosci, 2016, 10:362-368.
doi: 10.3389/fpsyg.2019.00362 |
[40] |
JACOBS J V, LYMAN C A, HITT J R, et al. Task-related and person-related variables influence the effect of low back pain on anticipatory postural adjustments[J]. Human Mov Sci, 2017, 54:210-219.
doi: 10.1016/j.humov.2017.05.007 |
[41] |
WU K W, LI J D, HUANG H P, et al. Bilateral asymmetry in kinematic strategies for obstacle-crossing in adolescents with severe idiopathic thoracic scoliosis[J]. Gait Posture, 2019, 71:211-218.
doi: 10.1016/j.gaitpost.2019.05.007 |
[42] |
RIJKEN N H M, VAN ENGELEN B G M, GEURTS A C H, et al. Dynamic stability during level walking and obstacle crossing in persons with facioscapulohumeral muscular dystrophy[J]. Gait Posture, 2015, 42(3):295-300.
doi: 10.1016/j.gaitpost.2015.06.005 |
[1] | 王子豪, 李昕华, 蒋慧萍, 郭赛男, 梁秋曼, 史婷奇. 全膝关节置换术后短期膝关节功能及其影响因素[J]. 《中国康复理论与实践》, 2024, 30(1): 111-118. |
[2] | 林娜, 高菡璐, 卢惠苹, 陈燕清, 郑军凡, 陈述荣. 虚拟现实技术对脑卒中上肢功能影响的弥散张量成像研究[J]. 《中国康复理论与实践》, 2024, 30(1): 61-67. |
[3] | 王昊懿, 史亚伟, 鲁俊, 许光旭. 主观垂直感知障碍对脑卒中患者功能影响的回顾性研究[J]. 《中国康复理论与实践》, 2024, 30(1): 68-73. |
[4] | 陈珺雯, 陈谦, 陈程, 李淑月, 刘玲玲, 吴存书, 龚翔, 鲁俊, 许光旭. 改良八段锦身体活动对脑卒中患者心肺功能、运动功能和日常生活活动能力的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 74-80. |
[5] | 胡永林, 马颖, 窦超, 陆安民, 江小鸽, 宋新建, 肖玉华. 肩部控制训练联合神经松动术对脑卒中偏瘫患者肩痛及上肢功能的效果[J]. 《中国康复理论与实践》, 2024, 30(1): 81-86. |
[6] | 王贺, 韩靓, 阚梦凡, 于少泓. 电刺激治疗脑卒中后肩手综合征有效性的系统评价与Meta分析[J]. 《中国康复理论与实践》, 2023, 29(9): 1048-1056. |
[7] | 史佳伟, 李凌宇, 杨浩杰, 王琴潞, 邹海欧. 预康复对全膝关节置换术后患者的有效性:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1057-1064. |
[8] | 胡晓诗, 张琦, 岳青, 梁艳华, 李晓松, 冯啊美, 张燕庆. 矫形弹力绷带对痉挛性偏瘫脑性瘫痪患儿步态对称性和步行能力的效果[J]. 《中国康复理论与实践》, 2023, 29(9): 1083-1089. |
[9] | 张冠聪, 黄秋晨, 顾蕊, 刘四海, 胡春英, 刘克敏. 不同神经肌肉训练方法对早期膝骨关节炎患者疼痛和运动功能效果的比较[J]. 《中国康复理论与实践》, 2023, 29(9): 1090-1097. |
[10] | 孙藤方, 任梦婷, 杨琳, 王耀霆, 王红雨, 闫兴洲. 高压氧治疗联合重复外周磁刺激干预脑卒中患者踝运动功能和平衡能力的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 875-881. |
[11] | 王亚楠, 刘西花. 脑卒中偏瘫患者主观和客观平衡功能测量的相关性及预测效能[J]. 《中国康复理论与实践》, 2023, 29(8): 890-895. |
[12] | 张意彬, 吕杰, 喻洪流. 基于模糊逻辑算法的智能膝关节假肢步态相位识别[J]. 《中国康复理论与实践》, 2023, 29(8): 896-902. |
[13] | 王海云, 王寅, 周信杰, 何爱群. 基于“中枢-外周-中枢”理论的经颅直流电刺激结合针刺干预脑卒中患者中枢及上肢功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 919-925. |
[14] | 陈怡婷, 王倩, 崔慎红, 李映彩, 张思鈺, 魏衍旭, 任慧, 冷军, 陈斌. 双侧序贯重复经颅磁刺激干预脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2023, 29(8): 926-932. |
[15] | 李振亚, 孙洁, 郭鹏飞, 王光明. 脑卒中患者口期和咽期吞咽功能改变与误吸的相关性:基于电视透视吞咽检查[J]. 《中国康复理论与实践》, 2023, 29(8): 933-939. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 212
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 627
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|