《中国康复理论与实践》 ›› 2021, Vol. 27 ›› Issue (7): 852-858.doi: 10.3969/j.issn.1006-9771.2021.07.019
曹子君1,2,王芳1,2(),何耀广1,2,张宇1,2,王萌秀1,2,张建国1,2(
)
收稿日期:
2020-12-04
修回日期:
2021-05-24
出版日期:
2021-07-25
发布日期:
2021-07-28
通讯作者:
王芳,张建国
E-mail:fwang@tust.edu.cn;jg-zh@tust.edu.cn
作者简介:
曹子君(1990-),男,汉族,山西广灵县人,博士研究生,主要研究方向:生物力学、糖尿病减压鞋具。
基金资助:
CAO Zi-jun1,2,WANG Fang1,2(),HE Yao-guang1,2,ZHANG Yu1,2,WANG Meng-xiu1,2,ZHANG Jian-guo1,2(
)
Received:
2020-12-04
Revised:
2021-05-24
Published:
2021-07-25
Online:
2021-07-28
Contact:
WANG Fang,ZHANG Jian-guo
E-mail:fwang@tust.edu.cn;jg-zh@tust.edu.cn
Supported by:
摘要:
目的 分析糖尿病患者足底压力特征,设计鞋垫的减压结构,以降低足底软组织表面压力和内部应力。
方法 基于CT影像建立人体足部三维有限元模型。在糖尿病患者足底高压区设计孔结构。采用正交试验和有限元法,分析孔的直径、深度、间距对足底软组织表面压力和内部应力的影响,得到最优方案,分别用有限元法和实验法分析多孔鞋垫的减压效果。
结果 糖尿病患者足底压力峰值高于健康人。在跖骨区和跟骨区采用直径5 mm、深6 mm、间距2 mm的孔结构,降低软组织表面压力和内部应力的效果较好,行走过程中足趾区、跖骨区、中足区和跟骨区的压力峰值分别降低15.6%、45.6%、53.5%和10.1%。
结论 有限元分析有助于了解糖尿病患者足底软组织内部应力;多孔鞋垫能降低软组织表面压力和内部应力。
中图分类号:
曹子君,王芳,何耀广,张宇,王萌秀,张建国. 糖尿病患者足底压力和鞋垫减压结构的有限元分析[J]. 《中国康复理论与实践》, 2021, 27(7): 852-858.
CAO Zi-jun,WANG Fang,HE Yao-guang,ZHANG Yu,WANG Meng-xiu,ZHANG Jian-guo. Plantar Pressure and Offloading Insole Structure for Diabetic Patients: A Finite Element Analysis[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2021, 27(7): 852-858.
表2
有限元模型材料参数"
名称 | 材料类型 | 材料参数 |
---|---|---|
地面 | 线弹性 | E = 17000 MPa, ν = 0.1 |
骨骼 | 线弹性 | E = 7300 MPa, ν = 0.3 |
健康软组织 | 超弹性 | |
糖尿病软组织 | 超弹性 | |
鞋垫 | 超弹性泡沫 | |
表4
极差分析结果"
因素水平 | 跟骨区压力峰值(kPa) | 跖骨区压力峰值(kPa) | 软组织应力峰值(kPa) | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | |
K1 | 491.7 | 489.2 | 479.2 | 449.0 | 444.7 | 436.5 | 910.0 | 905.0 | 890.3 |
K2 | 477.3 | 485.4 | 486 | 447.7 | 443.2 | 443.4 | 898.9 | 888.7 | 890.6 |
K3 | 478.2 | 472.6 | 482.0 | 436.4 | 445.2 | 453.2 | 877.7 | 892.9 | 905.7 |
R | 14.4 | 16.6 | 6.8 | 12.6 | 2.0 | 16.7 | 32.3 | 16.3 | 15.4 |
因素主次 | B>A>C | C>A>B | A>B>C | ||||||
较优方案 | A2B3C1 | A3B2C1 | A3B2C1 |
[1] |
SAEEDI P, PETERSOHN I, SALPEA P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition[J], Diabetes Res Clin Pract, 2019, 157:107843.
doi: 10.1016/j.diabres.2019.107843 |
[2] |
SUDESNA C, KAMLESH K, MELANIE J D. Type 2 diabetes[J]. Lancet, 2017, 389:2239-2251.
doi: 10.1016/S0140-6736(17)30058-2 |
[3] |
INGELFINGER J R, ARMSTRONG D G, BOULTON A J M, et al. Diabetic foot ulcers and their recurrence[J]. New Engl J Med, 2017, 376(24):2367-2375.
doi: 10.1056/NEJMra1615439 |
[4] | 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国实用内科杂志, 2018, 38(4):292-344. |
Chinese Diabetes Society. Guidelines for the Prevention and Control of Type 2 Diabetes in China (2017 Edition)[J]. Chin J Prac Inter Med, 2018, 38(4):292-344. | |
[5] | 刘岩, 孙铭良, 李萍, 等. 我国糖尿病足患者足底减压治疗现状和未来发展方向[J]. 临床荟萃, 2018, 33(2):97-99. |
LIU Y, SUN M L, LI P, et al. Current status and future development of plantar decompression in patients with diabetic foot in China[J]. Clin Focus, 2018, 33(2):97-99. | |
[6] | 徐俊. 国际糖尿病足工作组关于鞋袜和减压的指南推荐要点[J]. 糖尿病天地(临床), 2015, 9(10):506-507. |
XU J. Key points of IWGDF guidance on footwear and offloading interventions to prevent and heal foot ulcers in patients with diabetes[J]. Clin J Diabetes World, 2015, 9(10):506-507. | |
[7] |
ANNAMARIA G, ZIMI S, GABRIELLA G, et al. The role of foot morphology on foot function in diabetic subjects with or without neuropathy[J]. Gait Posture, 2013, 37(4):603-610.
doi: 10.1016/j.gaitpost.2012.09.024 |
[8] | MANTOVANI A M, SAVIAN N U, PALMA M R, et al. Vasculopathy associated with peripheral neuropathy in gait parameters of diabetic people[J]. MotrizRio Claro, 2016, 22(4):231-236. |
[9] | HELLSTRAND T U, ZÜGNER R, LISOVSKAJA V, et al. Comparison of plantar pressure in three types of insole given to patients with diabetes at risk of developing foot ulcers:a two-year, randomized trial[J]. J Clin Transl Endocrinol, 2014, 1(4):121-132. |
[10] |
PATON J S, STENHOUSE E A, BRUCE G, et al. A comparison of customised and prefabricated insoles to reduce risk factors for neuropathic diabetic foot ulceration: a participant-blinded randomised controlled trial[J]. J Foot Ankle Res, 2012, 5(1):31.
doi: 10.1186/1757-1146-5-31 |
[11] |
RANA E H, ELSHAZLY O, AMER A. The role of a total contact insole in diminishing foot pressures following partial first ray amputation in diabetic patients[J]. Foot, 2013, 23(1):6-10.
doi: 10.1016/j.foot.2012.10.002 |
[12] |
CHEUNG T M, ZHANG M. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method[J]. Med Eng Phys, 2008, 30(3):269-277.
doi: 10.1016/j.medengphy.2007.05.002 |
[13] |
WAAIJMAN R, ARTS M L J, HASPELS R, et al. Pressure-reduction and preservation in custom-made footwear of patients with diabetes and a history of plantar ulceration[J]. Diabetic Med, 2012, 29(12):1542-1549.
doi: 10.1111/dme.2012.29.issue-12 |
[14] | 罗瑜莹, 肖生苓, 李石磊. 基于微波成型工艺的木质纤维多孔缓冲材料配方优化[J]. 中南林业科技大学学报, 2017, 37(8):129-134. |
LUO Y Y, XIAO S L, LI S L. Formulation optimization of wood fiber porous cushioning material based on microwave forming process[J]. J Central South Univ Forestry Technol, 2017, 37(8):129-134. | |
[15] | 罗瑜莹, 肖生苓, 李琛, 等. 植物纤维多孔缓冲包装材料的研究现状与展望[J]. 包装工程, 2016, 37(7):17-22. |
LUO Y Y, XIAO S L, LI C, et al. Status and trends of researches on plant fiber porous cushioning packaging materials[J]. Packag Eng, 2016, 37(7):17-22. | |
[16] | 章浩伟, 李磊, 刘颖, 等. 个性化足跟痛缓冲鞋垫的生物力学研究[J]. 医用生物力学, 2018, 33(1):30-36. |
ZHANG H W, LI L, LIU Y, et al. Biomechanical study of personalized buffer insoles for heel pain[J]. J Med Biomech, 2018, 33(1):30-36. | |
[17] |
GULDEMOND N A, LEFFERS P, SANDERS A P, et al. Daily-life activities and in-shoe forefoot plantar pressure in patients with diabetes[J]. Diabetes Res Clin Pract, 2007, 77(2):203-209.
doi: 10.1016/j.diabres.2006.11.006 |
[18] |
OWINGS T M, APELQVIST J, STENSTRÖM A, et al. Plantar pressures in diabetic patients with foot ulcers which have remained healed[J]. Diabetic Med, 2010, 26(11):1141-1146.
doi: 10.1111/dme.2009.26.issue-11 |
[19] | 张建国, 卜月丽, 王芳, 等. 糖尿病人群自然步态下足底压力分布研究[J]. 天津科技大学学报, 2020, 35(4):53-57 |
ZHANG J G, BU Y L, WANG F, et al. Distribution of plantar pressure in natural gait of diabetic patients[J]. J Tianjin Univ Sci Technol, 2020, 35(4):53-57. | |
[20] | 卜月丽, 王芳, 张建国, 等. 老年糖尿病患者的足底压力及步态特征[J]. 中国组织工程研究, 2020, 24(5):736-740. |
BU Y L, WANG F, ZHANG J G, et al. Plantar pressure and gait characteristics in older adult patients with diabetes[J]. Chin J Tissue Eng Res, 2020, 24(5):736-740. | |
[21] | 张明, 张德文, 余嘉, 等. 足部三维有限元建模方法及其生物力学应用[J]. 医用生物力学, 2007, 22(4):339-344. |
ZHANG M, ZHANG D W, YU J, et al. Human foot three-dimensional finite element of modeling and its biomechanical applications[J]. J Med Biomech, 2007, 22(4):339-344. | |
[22] |
LEMMON D, SHIANG T Y, HASHMI A, et al. The effect of insoles in therapeutic footwear: a finite element approach[J]. J Biomech, 1997, 30(6):615-620.
doi: 10.1016/S0021-9290(97)00006-7 |
[23] |
REEVES N D, MAGANARIS C N, FERRETTI G, et al. Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures[J]. J Appl Physiol, 2005, 98(6):2278-2286.
doi: 10.1152/japplphysiol.01266.2004 |
[24] |
CHEUNG T M, ZHANG M, LEUNG K L, et al. Three-dimensional finite element analysis of the foot during standing: a material sensitivity study[J]. J Biomech, 2005, 38(5):1045-1054.
doi: 10.1016/j.jbiomech.2004.05.035 |
[25] |
CHEUNG T M, ZHANG M. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method[J]. Med Eng Phys, 2008, 30(3):269-277.
doi: 10.1016/j.medengphy.2007.05.002 |
[26] |
CHEUNG T M, ZHANG M, AN K N. Effect of Achilles tendon loading on plantar fascia tension in the standing foot[J]. Clin Biomech, 2006, 21(2):194-203.
doi: 10.1016/j.clinbiomech.2005.09.016 |
[27] |
LIU X, ZHANG M. Redistribution of knee stress using laterally wedged insole intervention: finite element analysis of knee-ankle-foot complex[J]. Clin Biomech, 2013, 28(1):61-67.
doi: 10.1016/j.clinbiomech.2012.10.004 |
[28] | LAZZARINI P A, HURN S E, KUYS S S, et al. Direct inpatient burden caused by foot-related conditions: a multisite point-prevalence[J]. BMJ Open, 2016, 6(6):1-15. |
[29] |
MELAI T, IJZERMAN T H, SCHAPER N C, et al. Calculation of plantar pressure time integral, an alternative approach[J]. Gait Posture, 2011, 34(3):379-383.
doi: 10.1016/j.gaitpost.2011.06.005 |
[30] |
KEIJSERS N L W, STOLWIJK N M, PATAKY T C. Linear dependence of peak, mean, and pressure-time integral values in plantar pressure images[J]. Gait Posture, 2010, 31(1):140-142.
doi: 10.1016/j.gaitpost.2009.08.248 |
[31] |
WAAIJMAN R, BUS S A. The interdependency of peak pressure and pressure-time integral in pressure studies on diabetic footwear: no need to report both parameters[J]. Gait Posture, 2012, 35(1):1-5.
doi: 10.1016/j.gaitpost.2011.07.006 |
[32] |
GU Y D, LI J S, LAKE M J, et al. Image-based midsole insert design and the material effects on heel plantar pressure distribution during simulated walking loads[J]. Comput Methods Biomech Biomed Engin, 2011, 14(8):747-753.
doi: 10.1080/10255842.2010.493886 |
[33] |
ERDEMIR A, SAUCERMAN J, LEMMON D, et al. Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models[J]. J Biomech, 2005, 38(9):1798-1806.
doi: 10.1016/j.jbiomech.2004.09.009 |
[34] | 弓太生, 张戈云, 李方, 等. 糖足足底压力分布特征与压力分散垫的研究[J]. 中国皮革, 2017, 46(3):52-58. |
GONG T S, ZHANG G Y, LI F, et al. Research of diabetic foot planter pressure distribution feature and pressure dispersion insole[J]. Chin Leather, 2017, 46(3):52-58. | |
[35] |
ACTIS R L, VENTURA L B, LOTT D J, et al. Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking[J]. Med Biol Eng Comput, 2008, 46(4):363-371.
doi: 10.1007/s11517-008-0311-5 |
[36] |
NOUMAN M, LEELASAMRAN W, CHATPUN S. Effectiveness of total contact orthosis for plantar pressure redistribution in neuropathic diabetic patients during different walking activities[J]. Foot Ankle Int, 2017, 38(8):901-908.
doi: 10.1177/1071100717704427 |
[37] |
PROMPERS L, HUIJBERTS M, APELQVIST J, et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study[J]. Diabetologia, 2007, 50:18-25.
doi: 10.1007/s00125-006-0491-1 |
[1] | 王芳, 杨涛, 何耀广, 曹子君, 刘国庆, 胡军, 张建国, 樊瑜波. 基于糖尿病患者步态周期足底压力的变刚度鞋垫设计[J]. 《中国康复理论与实践》, 2023, 29(4): 408-415. |
[2] | 冯臣,药家明,周国瑾,李慕瑶,王黎,王梅. 高强度间歇训练对2型糖尿病患者运动干预的效果:基于《WHO关于身体活动和久坐行为的指南》和WHO-FICs[J]. 《中国康复理论与实践》, 2022, 28(6): 646-652. |
[3] | 黄兆欣,张艺,崔晨曦,祝晓静,肖晓飞. 基于ICF的青年女性“内八字”步态生物力学分析[J]. 《中国康复理论与实践》, 2022, 28(12): 1459-1465. |
[4] | 王梅,廖婷,陈建. 社区环境下2型糖尿病三种运动相关干预模式健康效益的系统综述[J]. 《中国康复理论与实践》, 2022, 28(11): 1288-1298. |
[5] | 王建国,唐佳,董继革,陈亚平. 功能性踝关节不稳足底压力分析[J]. 《中国康复理论与实践》, 2022, 28(10): 1217-1223. |
[6] | 朱飞龙,张明,郭晓琦,曹建刚,朱茜,陈杰,王斌,吴宇,陈伟. 矫形鞋垫对青少年特发性脊柱侧弯患者脊柱畸形和步行的改善效果[J]. 《中国康复理论与实践》, 2021, 27(6): 645-652. |
[7] | 林强,郑煜欣,廖婉晨,罗志伟,黎婉颖,欧海宁,梁俊杰. 脑卒中患者静态平衡的足底压力分析[J]. 《中国康复理论与实践》, 2021, 27(3): 290-296. |
[8] | 王小泉,刘超然,王宁华. 糖尿病患者正中神经的超声评估[J]. 《中国康复理论与实践》, 2021, 27(3): 329-333. |
[9] | 戴月, 杨林丽, 蒋瑞, 孙成梅. |
[10] | 陈影, 张爽, 余珍, 潘利妞, 张伟宏. 运动对 |
[11] | 穆晶晶, 陈斌娟, 逯雪峰, 张曈, 王媛, 王引弟, 童明辉. 剪切波弹性成像在2型糖尿病腓肠神经病变中的应用[J]. 《中国康复理论与实践》, 2019, 25(2): 213-216. |
[12] | 王梅, 李玉霞, 张田丽, 曾斯琴, 杜亮, 柴丽, 董燕飞, 邱卓英, 李安巧. 运动干预糖尿病前期和糖尿病的研究进展[J]. 《中国康复理论与实践》, 2019, 25(11): 1272-1278. |
[13] | 杨智权, 刘爱贤, 聂忆秋. 脑梗死患者基于跑台步行的步态分析[J]. 《中国康复理论与实践》, 2019, 25(11): 1332-1335. |
[14] | 夏小慧, 王卉, 张社平, 夏惠芸. KCNQ1基因7个位点单核苷酸多态性与糖尿病前期人群运动干预敏感性的关联[J]. 《中国康复理论与实践》, 2018, 24(5): 575-580. |
[15] | 陈炳霖, 郭佳宝. 高强度间歇运动对2型糖尿病干预效果的Meta分析[J]. 《中国康复理论与实践》, 2018, 24(3): 353-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|