《中国康复理论与实践》 ›› 2022, Vol. 28 ›› Issue (7): 803-808.doi: 10.3969/j.issn.1006-9771.2022.07.010
罗盛飞1,胡志波2,王宁华3,闵红巍4,5,张德俭4,刘克敏4,5()
收稿日期:
2021-11-12
修回日期:
2022-02-14
出版日期:
2022-07-25
发布日期:
2022-08-08
通讯作者:
刘克敏
E-mail:keminlqliu@sina.com
作者简介:
罗盛飞(1971-),男,汉族,湖北十堰市人,硕士,副主任医师,主要研究方向:膝关节损伤后修复方面的研究。|刘克敏(1964-),男,汉族,山西长治市人,博士,主任医师,主要研究方向:骨关节疾病治疗、骨关节功能重建与康复。
基金资助:
LUO Shengfei1,HU Zhibo2,WANG Ninghua3,MIN Hongwei4,5,ZHANG Dejian4,LIU Kemin4,5()
Received:
2021-11-12
Revised:
2022-02-14
Published:
2022-07-25
Online:
2022-08-08
Contact:
LIU Kemin
E-mail:keminlqliu@sina.com
Supported by:
摘要:
目的 对原发性膝骨关节炎(PKO)易感基因多态性位点进行系统综述。
方法 检索PubMed、Web of Science、中国知网、万方数据库和中国生物医学文献数据库从建库至2020年12月有关PKO遗传易感性与基因多态性的文献,进行系统综述。
结果 纳入有关人类PKO易感基因多态性位点的文献共42篇,涉及有关PKO发病的细胞信号通路包括炎症反应、受体信号通路、转录因子信号通路、骨相关信号通路等,包括炎症因子基因、趋化因子基因、Toll样受体基因、转录因子基因、肥胖相关基因、骨相关基因等多个基因多态性位点。
结论 炎症因子基因和骨相关等位基因多态性很可能与PKO易感性有关。
中图分类号:
罗盛飞,胡志波,王宁华,闵红巍,张德俭,刘克敏. 原发性膝骨关节炎易感基因多态性位点的系统综述[J]. 《中国康复理论与实践》, 2022, 28(7): 803-808.
LUO Shengfei,HU Zhibo,WANG Ninghua,MIN Hongwei,ZHANG Dejian,LIU Kemin. Susceptibility gene polymorphisms of primary knee osteoarthritis: a systematic review[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(7): 803-808.
[1] |
MARTEL-PELLETIER J, BARR A J, CICUTTINI F M, et al. Osteoarthritis[J]. Nat Rev Dis Primers, 2016, 2: 16072.
doi: 10.1038/nrdp.2016.72 |
[2] | BING W, DAN X, SHENGJIE D, et al. A systematic review of the epidemiology and disease burden of knee osteoarthritis in China[J]. Chin J Evid-Based Med, 2018, 18(2): 134-142. |
[3] |
WILKINSON J M, ZEGGINI E. The genetic epidemiology of joint shape and the development of osteoarthritis[J]. Calcified Tissue Int, 2021, 109(3): 257-276.
doi: 10.1007/s00223-020-00702-6 |
[4] |
HOCHBERG M C, YERGES-ARMSTRONG L, YAU M, et al. Genetic epidemiology of osteoarthritis: recent developments and future directions[J]. Curr Opin Rheumatol, 2013, 25(2): 192-197.
doi: 10.1097/BOR.0b013e32835cfb8e |
[5] | LOUGHLIN J. The genetic epidemiology of human primary osteoarthritis: current status[J]. Expert Rev Mol Med, 2005, 7(9): 1-12. |
[6] |
ABDEL GALIL S M, EZZELDIN N, FAWZY F, et al. The single-nucleotide polymorphism (SNP) of tumor necrosis factor α-308G/A gene is associated with early-onset primary knee osteoarthritis in an Egyptian female population[J]. Clin Rheumatol, 2017, 36(11): 2525-2530.
doi: 10.1007/s10067-017-3727-1 |
[7] |
SINGH M, VALECHA S, KHINDA R, et al. Multifactorial landscape parses to reveal a predictive model for knee osteoarthritis[J]. Int J Environ Res Public Health, 2021, 18(11): 5933.
doi: 10.3390/ijerph18115933 |
[8] |
DEQUEKER J, AERSSENS J, LUYTEN F P. Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship[J]. Aging Clin Exp Res, 2003, 15(5): 426-439.
doi: 10.1007/BF03327364 |
[9] |
SMITH A J, HUMPHRIES S E. Cytokine and cytokine receptor gene polymorphisms and their functionality[J]. Cytokine Growth Factor Rev, 2009, 20(1): 43-59.
doi: 10.1016/j.cytogfr.2008.11.006 |
[10] |
KIM H S. Assignment of human interleukin 16 (IL16) to chromosome 15q26.3 by radiation hybrid mapping[J]. Cytogenetics Cell Genetics, 1999, 84(1-2): 93.
doi: 10.1159/000015202 |
[11] |
LUO S X, LI S, ZHANG X H, et al. Genetic polymorphisms of interleukin-16 and risk of knee osteoarthritis[J]. PLoS One, 2015, 10(5): e0123442.
doi: 10.1371/journal.pone.0123442 |
[12] | QUAN Y, ZHOU B, WANG Y, et al. Association between IL17 polymorphisms and risk of cervical cancer in Chinese women[J]. Clin Dev Immunol, 2012, 2012: 258293. |
[13] |
HONORATI M C, BOVARA M, CATTINI L, et al. Contribution of interleukin 17 to human cartilage degradation and synovial inflammation in osteoarthritis[J]. Osteoarthritis Cartilage, 2002, 10(10): 799-807.
doi: 10.1053/joca.2002.0829 |
[14] |
BAI Y, GAO S, LIU Y, et al. Correlation between interleukin-17 gene polymorphism and osteoarthritis susceptibility in Han Chinese population[J]. BMC Med Genetics, 2019, 20(1): 20.
doi: 10.1186/s12881-018-0736-0 |
[15] | 张培莉, 杨发满, 乔志忠, 等. 白细胞介素17A和17F单核苷酸多态性与膝骨关节炎的相关性[J]. 中华医学杂志, 2019, 99(24): 1870-1874. |
ZHANG P L, YANG F M, QIAO Z Z, et al. Association between interleukin-17A and 17F single nucleotide polymorphisms and knee osteoarthritis[J]. Natl Med J Chin, 2019, 99(24): 1870-1874. | |
[16] |
FITZGERALD K A, KAGAN J C. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066.
doi: 10.1016/j.cell.2020.02.041 |
[17] |
SCANZELLO C R, GOLDRING S R. The role of synovitis in osteoarthritis pathogenesis[J]. Bone, 2012, 51(2): 249-257.
doi: 10.1016/j.bone.2012.02.012 |
[18] |
CHEN S, ZHANG L, XU R, et al. The BDKRB2 +9/-9 polymorphisms influence pro-inflammatory cytokine levels in knee osteoarthritis by altering TLR-2 expression: clinical and in vitro studies[J]. Cell Physiol Biochem, 2016, 38(3): 1245-1256.
doi: 10.1159/000443072 |
[19] |
YANG H Y, LEE H S, LEE C H, et al. Association of a functional polymorphism in the promoter region of TLR-3 with osteoarthritis: a two-stage case-control study[J]. J Orthop Res, 2013, 31(5): 680-685.
doi: 10.1002/jor.22291 |
[20] | 黄飞飞, 毛应德龙. TLR-9基因多态性与膝骨关节炎的易感性研究[J]. 浙江中西医结合杂志, 2018, 28(12): 1004-1008. |
HUANG F F, MAO YING D L. TLR-9 gene polymorphisms associated with susceptibility to knee osteoarthritis[J]. Zhejiang J Integr Tradit Chin West Med, 2018, 28(12): 1004-1008. | |
[21] |
PELLETIER J P, MARTEL-PELLETIER J, ABRAMSON S B. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets[J]. Arthritis Rheum, 2001, 44(6): 1237-1247.
doi: 10.1002/1529-0131(200106)44:6<1237::AID-ART214>3.0.CO;2-F |
[22] |
ZHENG M, SHI S, ZHENG Q, et al. Association between TLR-9 gene rs187084 polymorphism and knee osteoarthritis in a Chinese population[J]. Biosci Rep, 2017, 37(5): BSR20170844.
doi: 10.1042/BSR20170844 |
[23] |
BALBALOGLU O, SABAH OZCAN S, KORKMAZ M, et al. Promoter polymorphism (T-1486C) of TLR-9 gene is associated with knee osteoarthritis in a Turkish population[J]. J Orthop Res, 2017, 35(11): 2484-2489.
doi: 10.1002/jor.23559 |
[24] |
DROUIN J, LAMOLET B, LAMONERIE T, et al. The PTX family of homeodomain transcription factors during pituitary developments[J]. Mol Cell Endocrinol, 1998, 140(1/2): 31-36.
doi: 10.1016/S0303-7207(98)00026-4 |
[25] |
PELLICELLI M, PICARD C, WANG D, et al. E2F1 and TFDP1 regulate PITX1 expression in normal and osteoarthritic articular chondrocytes[J]. PLoS One, 2016, 11(11): e0165951.
doi: 10.1371/journal.pone.0165951 |
[26] |
PICARD C, PELLICELLI M, TAHERI M, et al. Nuclear accumulation of prohibitin 1 in osteoarthritic chondrocytes down-regulates PITX1 expression[J]. Arthritis Rheum, 2013, 65(4): 993-1003.
doi: 10.1002/art.37837 |
[27] |
FAN J, SHI D, DAI J, et al. Genetic polymorphism of PITX1 in susceptibility to knee osteoarthritis in a Chinese Han population: a case-control study[J]. Rheumatol Int, 2011, 31(5): 629-633.
doi: 10.1007/s00296-009-1341-5 |
[28] |
ZEGGINI E, PANOUTSOPOULOU K, SOUTHAM L, et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study[J]. Lancet, 2012, 380(9844): 815-823.
doi: 10.1016/S0140-6736(12)60681-3 |
[29] |
PELLICELLI M, PICARD C, WANG D, et al. E2F1 and TFDP1 regulate PITX1 expression in normal and osteoarthritic articular chondrocytes[J]. PLoS One, 2016, 11(11): e0165951.
doi: 10.1371/journal.pone.0165951 |
[30] |
SCOTECE M, CONDE J, LÓPEZ V, et al. Adiponectin and leptin: new targets in inflammation[J]. Basic Clin Pharmacol Toxicol, 2014, 114(1): 97-102.
doi: 10.1111/bcpt.12109 |
[31] |
MIN S, SHI T, HAN X, et al. Serum levels of leptin, osteopontin, and sclerostin in patients with and without knee osteoarthritis[J]. Clin Rheumatol, 2021, 40(1): 287-294.
doi: 10.1007/s10067-020-05150-z |
[32] |
BORGONIO-CUADRA V M, GONZáLEZ-HUERTA N C, ROJAS-TOLEDO E X, et al. Genetic association analysis of osteopontin and matrix Gla protein genes polymorphisms with primary knee osteoarthritis in Mexican population[J]. Clin Rheumatol, 2019, 38(1): 223-228.
doi: 10.1007/s10067-018-4146-7 |
[33] |
ZEGGINI E, PANOUTSOPOULOU K, SOUTHAM L, et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study[J]. Lancet, 2012, 380(9844): 815-823.
doi: 10.1016/S0140-6736(12)60681-3 |
[34] |
SHEPHERD C, REESE A E, REYNARD L N, et al. Expression analysis of the osteoarthritis genetic susceptibility mapping to the matrix Gla protein gene MGP[J]. Arthritis Res Ther, 2019, 21(1): 149.
doi: 10.1186/s13075-019-1934-7 |
[35] |
HUI W, CAO Z, WANG X, et al. Association of matrix Gla protein polymorphism and knee osteoarthritis in a Chinese population[J]. Biosci Rep, 2019, 39(1): BSR20182228.
doi: 10.1042/BSR20182228 |
[36] |
EDWARDS C J, FRANCIS-WEST P H. Bone morphogenetic proteins in the development and healing of synovial joints[J]. Semin Arthritis Rheum, 2001, 31(1): 33-42.
doi: 10.1053/sarh.2001.24875 |
[37] |
KANG Q, SUN M H, CHENG H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery[J]. Gene Ther, 2004, 11(17): 1312-1320.
doi: 10.1038/sj.gt.3302298 |
[38] |
BIJSTERBOSCH J, KLOPPENBURG M, REIJNIERSE M, et al. Association study of candidate genes for the progression of hand osteoarthritis[J]. Osteoarthritis Cartilage, 2013, 21(4): 565-569.
doi: 10.1016/j.joca.2013.01.011 |
[39] |
LIANG W, GAO B, XU G, et al. Association between single nucleotide polymorphisms of asporin (ASPN) and BMP5 with the risk of knee osteoarthritis in a Chinese Han population[J]. Cell Biochem Biophys, 2014, 70(3): 1603-1608.
doi: 10.1007/s12013-014-0102-6 |
[40] |
HEDBOM E, ANTONSSON P, HJERPE A, et al. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage[J]. J Biol Chem, 1992, 267(9): 6132-6136.
doi: 10.1016/S0021-9258(18)42671-3 |
[41] |
DI CESARE P E, CARLSON C S, STOLERMAN E S, et al. Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage[J]. J Orthop Res, 1996, 14(6): 946-955.
doi: 10.1002/jor.1100140615 |
[42] |
NEIDHART M, MÜLLER-LADNER U, FREY W, et al. Increased serum levels of non-collagenous matrix proteins (cartilage oligomeric matrix protein and melanoma inhibitory activity) in marathon runners[J]. Osteoarthritis Cartilage, 2000, 8(3): 222-229.
doi: 10.1053/joca.1999.0293 |
[43] |
MISHRA A, AWASTHI S, RAJ S, et al. Identifying the role of ASPN and COMP genes in knee osteoarthritis development[J]. J Orthop Surg Res, 2019, 14(1): 337.
doi: 10.1186/s13018-019-1391-7 |
[1] | 王航宇, 葛可可, 范永红, 都丽露, 邹敏, 封磊. 基于ICD-11和ICF主动式音乐疗法改善认知障碍老年人认知功能的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 36-43. |
[2] | 闻嘉宁, 金秋艳, 张琦, 李杰, 司琦. 认知参与型身体活动对发展儿童青少年执行功能的效果:基于ICF的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 44-53. |
[3] | 葛可可, 范永红, 王航宇, 都丽露, 李长江, 邹敏. 失眠老年人正念干预健康效益的系统综述[J]. 《中国康复理论与实践》, 2024, 30(1): 54-60. |
[4] | 张婧雅, 邹敏, 孙宏伟, 孙昌隆, 朱峻同. 听障儿童青少年焦虑或抑郁情绪心理干预效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1004-1011. |
[5] | 王俊宇, 杨永, 袁逊, 谢婷, 庄洁. 高强度间歇训练对健康儿童青少年执行功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1012-1020. |
[6] | 魏晓微, 杨剑, 魏春艳. 特殊教育学校孤独症谱系障碍儿童参与适应性瑜伽活动的心理与行为效益的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1021-1028. |
[7] | 杨亚茹, 杨剑. 基于WHO-HPS架构学校身体活动相关健康服务及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1040-1047. |
[8] | 史佳伟, 李凌宇, 杨浩杰, 王琴潞, 邹海欧. 预康复对全膝关节置换术后患者的有效性:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(9): 1057-1064. |
[9] | 蒋长好, 黄辰, 高晓妍, 戴元富, 赵国明. 神经反馈训练对老年人认知功能效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 903-909. |
[10] | 魏晓微, 杨剑, 魏春艳, 贺启令. 学校环境下适应性体育课程促进智力与发展性残疾儿童心理运动发展的系统综述[J]. 《中国康复理论与实践》, 2023, 29(8): 910-918. |
[11] | 王少璞, 陈钢. 基于世界卫生组织健康促进学校架构的心理行为健康服务及其健康效益:系统综述的系统综述[J]. 《中国康复理论与实践》, 2023, 29(7): 800-807. |
[12] | 蒋长好, 高晓妍. 短时身体活动对儿童认知功能影响的系统综述[J]. 《中国康复理论与实践》, 2023, 29(6): 667-672. |
[13] | 余中起, 王超, 贺刚, 张梁, 王瑞艳. 短足训练对成年扁平足患者干预效果的系统综述[J]. 《中国康复理论与实践》, 2023, 29(5): 551-557. |
[14] | 蓝诗玲, 庞伟, 李鑫, 刘梦云, 战玉军. 动作观察疗法对脑性瘫痪患儿上肢功能作用的系统综述[J]. 《中国康复理论与实践》, 2023, 29(5): 558-564. |
[15] | 黄承兰, 侯俞彤, 杨云霄, 曾红, 张子砚, 赵文宽, 王赞博, 单春雷, 戴尅戎, 蔡斌, 王金武. 3D打印矫形鞋垫在扁平足中应用的系统综述[J]. 《中国康复理论与实践》, 2023, 29(4): 416-422. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 262
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 371
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|