| [1] | KEUDELL A, SODHA S, COLLINS J, et al.  Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis[J]. Knee, 2014, 21(1): 180-184. doi: 10.1016/j.knee.2013.08.004
																																					pmid: 24148793
 | 
																													
																						| [2] | MISTRY J, ELMALLAH R, BHAVE A, et al.  Rehabilitative guidelines after total knee arthroplasty: a review[J]. J Knee Surg, 2016, 29(3): 201-217. doi: 10.1055/s-0036-1579670
																																					pmid: 26963074
 | 
																													
																						| [3] | RODRÍGUEZ-MERCHÁN E. The stiff total knee arthroplasty: causes, treatment modalities and results[J]. EFORT Open Rev, 2019, 4(10): 602-610. doi: 10.1302/2058-5241.4.180105
 | 
																													
																						| [4] | GUERRA Z, LUCCHETTI A, LUCCHETTI G. Motor imagery training after stroke: a systematic review and meta-analysis of randomized controlled trials[J]. J Neurol Phys Ther, 2017, 41(4): 205-214. doi: 10.1097/NPT.0000000000000200
																																					pmid: 28922311
 | 
																													
																						| [5] | MOUKARZEL M, RIENZO F, LAHOUD J, et al.  The therapeutic role of motor imagery during the acute phase after total knee arthroplasty: a pilot study[J]. Disabil Rehabil, 2019, 41(8): 926-933. doi: 10.1080/09638288.2017.1419289
																																					pmid: 29275638
 | 
																													
																						| [6] | 中国研究型医院学会关节外科学专业委员会膝关节部分置换研究学组. 膝关节单髁置换术围手术期管理专家共识[J]. 中华骨与关节外科杂志, 2020, 13(4): 265-271. | 
																													
																						|  | Chinese Research Hospital Association Joint Surgery Professional Committee Knee Partial Replacement Research Group. Expert Consensus on Perioperative Management of Unicompartmental Knee Arthroplasty[J]. Chin J Bone Joint Surg, 2020, 13(4): 265-271. | 
																													
																						| [7] | JEANNEROD M. The representing brain: neural correlates of motor intention and imagery[J]. Behav Brain Sci, 1994, 17(2): 187-245. doi: 10.1017/S0140525X00034026
 | 
																													
																						| [8] | PARAVLIC A, SLIMANI M, TOD D, et al.  Effects and dose-response relationships of motor imagery practice on strength development in healthy adult populations: a systematic review and meta-analysis[J]. Sport Med, 2018, 48(5): 1165-1187. doi: 10.1007/s40279-018-0874-8
 | 
																													
																						| [9] | KOBER S, SPŐRK R, BAUERNFEIND G, et al.  Age-related differences in the within-session trainability of hemodynamic parameters: a near-infrared spectroscopy-based neurofeedback study[J]. Neurobiol Aging, 2019, 81: 127-137. doi: S0197-4580(19)30178-2
																																					pmid: 31280116
 | 
																													
																						| [10] | DEIBER M, IBAÑEZ V, HONDA M, et al.  Cerebral processes related to visuomotor imagery and generation of simple finger movements studied with positron emission tomography[J]. NeuroImage, 1998, 7(2): 73-85. doi: 10.1006/nimg.1997.0314
																																					pmid: 9571132
 | 
																													
																						| [11] | GROSPRȆTRE S, RUFFION C, LEBON F. Motor imagery and cortico-spinal excitability: a review[J]. Eur J Sport Sci, 2016, 16(3): 317-324. doi: 10.1080/17461391.2015.1024756
																																					pmid: 25830411
 | 
																													
																						| [12] | AVANZION L, GUEUGNEAU N, BISIO A, et al.  Motor cortical plasticity induced by motor learning through mental practice[J]. Front Behav Neurosci, 2015, 9: 105. doi: 10.3389/fnbeh.2015.00105
																																					pmid: 25972791
 | 
																													
																						| [13] | BONASSI G, BIGGIO M, BISIO A, et al.  Provision of somatosensory inputs during motor imagery enhances learning-induced plasticity in human motor cortex[J]. Sci Rep, 2017, 7(1): 9300. doi: 10.1038/s41598-017-09597-0
																																					pmid: 28839226
 | 
																													
																						| [14] | MARUSIC U, GROSPRȆTRE S, PARAVLIC A, et al.  Motor imagery during action observation of locomotor tasks improves rehabilitation outcome in older adults after total hip arthroplasty[J]. Neural Plast, 2018, 2018: 1-9. | 
																													
																						| [15] | MOUKARZEL M, RIENZO F, LAHOUD J, et al.  The therapeutic role of motor imagery during the acute phase after total knee arthroplasty: a pilot study[J]. Disabil Rehabil, 2019, 41(8): 926-933. doi: 10.1080/09638288.2017.1419289
																																					pmid: 29275638
 | 
																													
																						| [16] | LI R, DU J B, YANG K, et al.  Effectiveness of motor imagery for improving functional performance after total knee arthroplasty: a systematic review with meta-analysis[J]. J Orthop Surg Res, 2022, 17(1): 65. doi: 10.1186/s13018-022-02946-4
																																					pmid: 35109909
 | 
																													
																						| [17] | PARAVLIC A, PISOT R, MARUSIC U. Specific and general adaptations following motor imagery practice focused on muscle strength in total knee arthroplasty rehabilitation: a randomized controlled trial[J]. PLoS One, 2019, 14(8): e0221089. doi: 10.1371/journal.pone.0221089
 | 
																													
																						| [18] | MOUKARZEL M, GUILLOT A, RIENZO F, et al.  The therapeutic role of motor imagery during the chronic phase after total knee arthroplasty: a pilot randomized controlled trial[J]. Eur J Phys Rehabil Med, 2019, 55(6): 806-815. | 
																													
																						| [19] | FORWARD J, GREUTER N, CRISALL S, et al.  Effect of structured touch and guided imagery for pain and anxiety in elective joint replacement patients: a randomized controlled trial: M-TIJRP[J]. Perm J, 2015, 19(4): 18-28. doi: 10.7812/TPP/14-236
 | 
																													
																						| [20] | HOYEK N, RIENZO F, COLLET C, et al.  The therapeutic role of motor imagery on the functional rehabilitation of a stage II shoulder impingement syndrome[J]. Disabil Rehabil, 2014, 36(13): 1113-1119. doi: 10.3109/09638288.2013.833309
																																					pmid: 24575717
 | 
																													
																						| [21] | PARACLIC A, MAFFULLI N, KOVAČ S, et al.  Home-based motor imagery intervention improves functional performance following total knee arthroplasty in the short term: a randomized controlled trial[J]. J Orthop Surg Res, 2020, 15(1): 451. doi: 10.1186/s13018-020-01964-4
																																					pmid: 33008432
 | 
																													
																						| [22] | ZAPPAROLI L, SACHELI L, SEGHEZZI S, et al.  Motor imagery training speeds up gait recovery and decreases the risk of falls in patients submitted to total knee arthroplasty[J]. Sci Rep, 2020, 10(1): 8917. doi: 10.1038/s41598-020-65820-5
																																					pmid: 32488010
 | 
																													
																						| [23] | 李冉, 杜巨豹. 运动想象在运动功能康复中的应用进展[J]. 中国康复医学杂志, 2022, 37(10): 1421-1425. | 
																													
																						| [24] | WILSON H, MIDDLETON R, ABRAM S, et al.  Patient relevant outcomes of unicompartmental versus total knee replacement: systematic review and meta-analysis[J]. BMJ, 2019, 364: 1352. | 
																													
																						| [25] | ATEŞ Y, AKDOĞAN M, ATILLA H. Which knee replacement do the patients forget? Unicondylar or total knee arthroplasty[J]. Acta Orthop Traumatol Turc, 2021, 55(5): 417-421. doi: 10.5152/j.aott.
 | 
																													
																						| [26] | TILLE E, BEYER F, AUERBACH K, et al.  Better short-term function after unicompartmental compared to total knee arthroplasty[J]. BMC Musculoskelet Disord, 2021, 22(1): 326. doi: 10.1186/s12891-021-04185-w
 | 
																													
																						| [27] | 李子怡, 宋为群, 杜巨豹, 等. 骨科康复一体化模式下膝关节单髁置换术后一年内膝关节功能康复转归的临床研究[J]. 中国康复医学杂志, 2023, 38(4): 459-465. | 
																													
																						|  | LI Z Y, SONG W Q, DU J B, et al.  Effect of integrated orthopaedic rehabilitation on the outcome of motor function in patients with unicompartmental knee arthroplasty within one year after surgery[J]. Chin J Rehabil Med, 2023, 38(4): 459-465. | 
																													
																						| [28] | 李冉, 杜巨豹, 曹光磊, 等. 骨科康复一体化模式对全膝关节置换术患者运动功能的效果[J]. 中国康复理论与实践, 2022, 28(2): 144-149. doi: 10.3969/j.issn.1006-9771.2022.02.003
 | 
																													
																						|  | LI R, DU J B, CAO G L, et al.  Effects of integrated orthopedic rehabilitation pathway on motor function after total knee arthroplasty[J]. Chin J Rehabil Theory Pract, 2022, 28(2): 144-149. | 
																													
																						| [29] | PODSIADLO D, RICHARDON S. The Timed "Up & Go": a test of basic functional mobility for frail elderly persons[J]. J Am Geriatr Soc, 1991, 39(2): 142-148. doi: 10.1111/jgs.1991.39.issue-2
 | 
																													
																						| [30] | STEFFEN T, HACKER T, MOLLINGER L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds[J]. Phys Ther, 2002, 82(2): 128-137. doi: 10.1093/ptj/82.2.128
 | 
																													
																						| [31] | CLEMENT N. Patient factors that influence the outcome of total knee replacement: a critical review of the literature[J]. OA Orthopaedics, 2013, 1: 11. |