[1] |
恽晓平. 脑性瘫痪儿童康复评定[M]. 北京: 北京出版社, 2018: 111.
|
[2] |
SKOOG B, JAKOBSSON K E. Prevalence of spasticity and below-level neuropathic pain related to spinal cord injury level and damage to the lower spinal segments[J]. J Rehabil Med Clin Commun, 2020, 3: 1000039.
|
[3] |
BILLINGTON Z J, HENKE A M, GATER D R J. Spasticity management after spinal cord injury: the here and now[J]. J Pers Med, 2022, 12(5): 808.
|
[4] |
卢利萍, 桑德春, 季淑凤. 下肢康复机器人LR2训练对偏瘫患者下肢肌痉挛和ADL能力改善的疗效观察[J]. 中国康复医学杂志, 2018, 33(1): 45-49.
|
|
LU L P, SANG D C, JI S F. A study on the antispasticity effect and ADL of leg rehabilitation robot (LR2) in the hemiplegia patients[J]. Chin J Rehabil Med, 2018, 33(1): 45-49.
|
[5] |
FRANCISCO G E, WISSEL J, PLATZ T, et al. Post-stroke spasticity[M]// PLATZ T. Clinical pathways in stroke rehabilitation. Evidence-based clinical practice recommendations, Cham, Switzerland: WFNR-Springer, 2021.
|
[6] |
GUNNARSSON S, LEMMING D, ALEHAGEN S, et al. Dosing patterns in treatment of disabling spasticity with intrathecal Baclofen[J]. Rehabil Nurs, 2021, 46(6): 315-322.
|
[7] |
SKOOG B, HEDMAN B. Intrathecal Baclofen dosage for long-term treatment of patients with spasticity due to traumatic spinal cord injuries or multiple sclerosis[J]. Ann Rehabil Med, 2019, 43(5): 555-561.
doi: 10.5535/arm.2019.43.5.555
pmid: 31693845
|
[8] |
PALAZÓN-GARCÍA R, ALCOBENDAS-MAESTRO M, ESCLARIN-DE R A, et al. Treatment of spasticity in spinal cord injury with Botulinum toxin[J]. J Spinal Cord Med, 2019, 42(3): 281-287.
|
[9] |
FELIX B D, QUAN X S. Effectiveness of intelligent control strategies in robot-assisted rehabilitation: a systematic review[J]. IEEE Trans Neural Syst Rehabil Eng, 2024, 32: 1828-1840.
|
[10] |
杨绯, 潘钰, 吴琼, 等. 踝扭伤后关节生物力学和本体感觉变化特征及相关性[J]. 中国康复理论与实践, 2019, 25(12): 1365-1369.
|
|
YANG F, PAN Y, WU Q, et al. Biomechanics characteristics and its correlation with proprioception of ankle post sprain[J]. Chin J Rehabil Theory Pract, 2019, 25(12): 1365‐1369.
|
[11] |
REN Y, WU Y N, YANG C Y, et al. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation[J]. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(6): 589-596.
|
[12] |
ZHAI X X, WU Q, LI X, et al. Effects of robot-aided rehabilitation on the ankle joint properties and balance function in stroke survivors: a randomized controlled trial[J]. Front Neurol, 2021, 12: 719305.
|
[13] |
翟晓雪, 潘钰, 吴琼, 等. 踝关节智能牵伸训练对偏瘫患者踝关节生物力学特性及其运动功能和日常生活活动能力的影响[J]. 中华物理医学与康复杂志, 2021, 43(1): 25-29.
|
|
ZHAI X X, PAN Y, WU Q, et al. Ankle stretching can improve stroke survivors′ ankle biomechanics, balance, walking and ability in the activities of daily living[J]. Chin J Phys Med Rehabil, 2021, 43(1): 25-29.
|
[14] |
LIN P J, ZHAI X, LI W, et al. A transferable deep learning prognosis model for predicting stroke patients' recovery in different rehabilitation trainings[J]. IEEE J Biomed Health Inform, 2022, 26(12): 6003-6011.
|
[15] |
KIRSHBLUM S C, BURNS S P, BIERING-SORENSEN F, et al. International Standards for Neurological Classification of Spinal Cord Injury (revised 2011)[J]. J Spinal Cord Med, 2011, 34(6): 535-546.
doi: 10.1179/204577211X13207446293695
pmid: 22330108
|
[16] |
恽晓平. 康复疗法评定学[M]. 2版. 北京: 华夏出版社, 2014: 205.
|
[17] |
GAO M M, YUN X P, ZHANG T. VSA-3000: A quantitative vibration sensation testing device for patients with central nervous system injury[J]. Front Neurol, 2020, 11: 936.
doi: 10.3389/fneur.2020.00936
pmid: 33013633
|
[18] |
夏晓昧, 蒋孝翠, 赵秦, 等. 序贯应用全身振动训练和下肢康复机器人训练对不完全性脊髓损伤患者下肢功能的影响[J]. 江苏医药, 2022, 48(8): 801-804.
|
|
XIA X M, JIANG X C, ZHAO Q, et al. Effect of sequential application of whole-body vibration training and lower limb rehabilitation robot training on function of lower limbs in patients with incomplete spinal cord injury[J]. Jiangsu Med J, 2022, 48(8): 801-804.
|
[19] |
CALABRÒ R S, BILLERI L, CIAPPINA F, et al. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation[J]. Expert Rev Med Devices, 2022, 19(1): 83-95.
|
[20] |
SHAKTI D, DAS R, KUMAR N, et al. Development of robotic rehabilitation device for spasticity treatment of acute spinal cord injury patients[J]. IETE J Res, 2021, 69(8): 5044-5051.
|
[21] |
PILKAR R, MOMENI K, RAMAMNUJAM A, et al. Use of surface EMG in clinical rehabilitation of individuals with SCI: barriers and future considerations[J]. Front Neurol, 2020, 11: 578559.
|
[22] |
LI J, SU K, MEI J, et al. Using surface electromyography to evaluate the efficacy of governor vessel electroacupuncture in poststroke lower limb spasticity: study protocol for a randomized controlled parallel trial[J]. Evid Based Complement Alternat Med, 2021, 2021: 5511031.
|
[23] |
LI S, LUO X, ZHANG S, et al. Evaluation of multilevel surgeries in children with spastic cerebral palsy based on surface electromyography[J]. Front Neurosci, 2021, 15: 680645.
|
[24] |
BALBINOT G, JONER W M, LI G, et al. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: a scoping review[J]. Clin Neurophysiol, 2022, 138: 61-73.
doi: 10.1016/j.clinph.2022.02.028
pmid: 35364465
|
[25] |
LEE Y, CHEN K, REN Y, et al. Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis[J]. Mult Scler Relat Disord, 2017, 11: 65-70.
|