《中国康复理论与实践》 ›› 2025, Vol. 31 ›› Issue (10): 1227-1233.doi: 10.3969/j.issn.1006-9771.2025.10.014

• 应用研究 • 上一篇    下一篇

基于语音特征的帕金森病与多系统萎缩帕金森型的早期鉴别诊断

马凌燕1, 曹杰2, 陈仲略2, 任康2(), 冯涛1,3()   

  1. 1.首都医科大学附属北京天坛医院神经病学中心运动障碍性疾病科,北京市 100070
    2.华中科技大学臻络科学神经系统疾病智能数字医疗技术中心,华中科技大学人工智能与自动化学院,湖北武汉市 430074
    3.国家神经系统疾病临床医学研究中心,北京市 100070
  • 收稿日期:2025-06-18 修回日期:2025-08-28 出版日期:2025-10-25 发布日期:2025-11-10
  • 通讯作者: 冯涛,E-mail: happyft@sina.com;任康,E-mail: renkang@gyenno.com
  • 作者简介:马凌燕(1985-),女,汉族,山东青岛市人,博士,主任医师,主要研究方向:帕金森病及运动障碍病遗传、分型、脑网络等。
  • 基金资助:
    北京市自然科学基金项目(7232048)

Early differential diagnosis between Parkinson's disease and multiple system atrophy-Parkinsonism based on speech feature

MA Lingyan1, CAO Jie2, CHEN Zhonglüe2, REN Kang2(), FENG Tao1,3()   

  1. 1. Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
    2. HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
    3. China National Clinical Research Center for Neurological Disease, Beijing 100070, China
  • Received:2025-06-18 Revised:2025-08-28 Published:2025-10-25 Online:2025-11-10
  • Contact: REN Kang, E-mail: happyft@sina.com; FENG Tao, E-mail: renkang@gyenno.com
  • Supported by:
    Beijing Natural Science Foundation(7232048)

摘要:

目的 基于语音信号分析和人工智能相结合的无创方法,实现帕金森病与多系统萎缩帕金森型(MSA-P)早期自动化鉴别诊断。
方法 2023年7月至2025年2月,于首都医科大学附属北京天坛医院运动障碍性疾病科招募病程< 5年的MSA-P患者48例、帕金森病患者76例。设计11种语音任务范式,提取语音信号的声门、发声、构音、韵律、音系特征,以及基于表征学习提取的深度特征,通过数据驱动的方法筛选出最具鉴别力的特征,构建多种机器学习模型,实现对帕金森病与MSA-P患者的分类识别,选择鉴别效能最强的诊断模型。
结果 逻辑回归模型表现最佳。对病程< 2年的早期患者,帕金森病与MSA-P间的分类准确率92.5%,精确率95.9%,召回率92.2%。在所有病程< 5年的患者中,逻辑回归模型准确率89.1%,精确率91.6%,召回率92.4%。即使使用单一语音范式提取的特征进行分析,诊断准确率也可达77.7%。
结论 语音信号在帕金森病与MSA-P的早期鉴别诊断中具有重要的应用潜力。

关键词: 帕金森病, 多系统萎缩, 语音分析, 机器学习, 鉴别诊断, 早期诊断

Abstract:

Objective To develop an early automated differential diagnosis between Parkinson's disease (PD) and multiple system atrophy-Parkinsonism (MSA-P) using a non-invasive combination of voice signal analysis and artificial intelligence.
Methods From July, 2023 to February, 2025, a total of 48 MSA-P patients and 76 PD patients with a course of less than five years were recruited from Beijing Tiantan Hospital, Capital Medical University. Voice features, such as glottal, phonatory, articulatory, prosodic, phonological and representation learning-based features were extracted from eleven voice tasks. A data-driven approach was used to identify the most discriminative features, which were utilized to construct diagnostic models using a variety of machine learning models. The diagnostic model with the strongest discriminative efficiency was selected.
Results The logistic regression model showed the best performance. For early-stage patients with a course less than two years, the diagnostic accuracy, precision and recall rate between PD and MSA-P were 92.5%, 95.9% and 92.2%, respectively. For all the patients with a course less than five years, the logistic regression model achieved an accuracy of 89.1%, a precision of 91.6%, and a recall rate of 92.4%. Even when features extracted from a single speech paradigm were used for analysis, the diagnostic accuracy could still reach 77.7%.
Conclusion Voice signals analysis is potential in the early differential diagnosis of PD and MSA-P.

Key words: Parkinson's disease, multiple system atrophy, voice analysis, machine learning, differential diagnosis, early diagnosis

中图分类号: