[1] |
MICHAEL W W. Clinical gait analysis: a review[J]. Hum Mov Sci, 1996, 15(3): 369-387.
|
[2] |
GOYAL V, DRAGUNAS A, ASKEW R L, et al. Altered biomechanical strategies of the paretic hip and knee joints during a step-up task[J]. Top Stroke Rehabil, 2023, 30(2): 137-145.
doi: 10.1080/10749357.2021.2008596
pmid: 36744516
|
[3] |
SMITH A W, WONG D P. Sagittal and frontal plane gait initiation kinetics in healthy, young subjects[J]. J Human Kinet, 2019, 67: 85-100.
|
[4] |
SCHALLIG W, PIENING M, QUIRIJNEN L, et al. Multi-segment foot kinematics during gait in children with spastic cerebral palsy[J]. Gait Posture, 2024, 110: 144-149.
doi: 10.1016/j.gaitpost.2024.03.014
pmid: 38608379
|
[5] |
CELIK Y, STUART S, WOO W L, et al. Gait analysis in neurological populations: progression in the use of wearables[J]. Med Eng Phys, 2021, 87: 9-29.
doi: 10.1016/j.medengphy.2020.11.005
pmid: 33461679
|
[6] |
ABE H, KOYANAGI S, KUSUMOTO Y, et al. Intra-rater and inter-rater reliability, minimal detectable change, and construct validity of the Edinburgh Visual Gait Score in children with cerebral palsy[J]. Gait Posture, 2022, 94: 119-123.
doi: 10.1016/j.gaitpost.2022.03.004
pmid: 35279565
|
[7] |
RATHINAM C, BATEMAN A, PEIRSON J, et al. Observational gait assessment tools in paediatrics: a systematic review[J]. Gait Posture, 2014, 40(2): 279-285.
|
[8] |
DEL PILAR DUQUE OROZCO M, ABOUSAMRA O, CHURCH C, et al. Reliability and validity of Edinburgh Visual Gait Score as an evaluation tool for children with cerebral palsy[J]. Gait Posture, 2016, 49: 14-18.
doi: S0966-6362(16)30096-0
pmid: 27344448
|
[9] |
BERNARDES R A, VENTURA F, NEVES H, et al. Wearable walking assistant for freezing of gait with environmental IoT monitoring: a contribution to the discussion[J]. Front Public Health, 2022, 10: 861621.
|
[10] |
BOUTAAYAMOU M, SCHWARTZ C, STAMATAKIS J, et al. Development and validation of an accelerometer-based method for quantifying gait events[J]. Med Eng Phys, 2015, 37(2): 226-232.
doi: 10.1016/j.medengphy.2015.01.001
pmid: 25618221
|
[11] |
JARCHI D, POPE J, LEE T, et al. A review on accelerometry-based gait analysis and emerging clinical applications[J]. IEEE Rev Biomed Eng, 2018, 11: 177-194.
doi: 10.1109/RBME.2018.2807182
pmid: 29994786
|
[12] |
ZENI J J, RICHARDS J G, HIGGINSON J S. Two simple methods for determining gait events during treadmill and overground walking using kinematic data[J]. Gait Posture, 2008, 27(4): 710-714.
doi: 10.1016/j.gaitpost.2007.07.007
pmid: 17723303
|
[13] |
JURI T, EDUARDO P, STEFANO R, et al. Gait partitioning methods: a systematic review[J]. Sensors, 2016, 16(1): 66
|
[14] |
RIBEIRO R P, GUERRERO F G, CAMARGO E N, et al. Construct validity and reliability of tests for sacroiliac dysfunction: standing flexion test (STFT) and sitting flexion test (SIFT)[J]. J Osteop Med, 2021, 121(11): 849-856.
|
[15] |
WELLS M, GOLDSTEIN L N, WELLS T, et al. Total body weight estimation by 3D camera systems: potential high-tech solutions for emergency medicine applications? A scoping review[J]. J Am Coll Emerg Physicians Open, 2024, 5(5): e13320.
|
[16] |
LIANG J, YUAN Z, LUO X, et al. A study on the 3D reconstruction strategy of a sheep body based on a Kinect v2 depth camera array[J]. Animals (Basel), 2024, 14(17): 2457.
|
[17] |
LU H Y, WANG X, HU C, et al. Home-based guidance training system with interactive visual feedback using Kinect on stroke survivors with moderate to severe motor impairment[J]. J Neuroeng Rehabil, 2024, 21(1): 189.
|
[18] |
WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]. Las Vegas:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4724-4732.
|
[19] |
BERNAL F, FEIPEL V, PLAZA M. Kinect-based gait analysis system design and concurrent validity in persons with anterolateral shoulder pain syndrome, results from a pilot study[J]. Sensors (Basel), 2024, 24(19): 6351.
|
[20] |
BAWA A, BANITSAS K, ABBOD M. A review on the use of Microsoft Kinect for gait abnormality and postural disorder assessment[J]. J Healthc Eng, 2021, 2021: 4360122.
|
[21] |
ALBERT J A, OWOLABI V, GEBEL A, et al. Evaluation of the pose tracking performance of the Azure Kinect and Kinect v2 for gait analysis in comparison with a gold standard: a pilot study[J]. Sensors (Basel), 2020, 20(18): 5104.
|
[22] |
KOZLOW P, ABID N, YANUSHKEVICH S. Gait type analysis using dynamic Bayesian networks[J]. Sensors (Basel), 2018, 18(10): 3329.
|
[23] |
ISMAIL A, SHOUMAN H, CHERRY A, et al. Torwads real time Kinect analysis system for early diagnosis of gait cycle abnormalities[C]. Beirut, Lebanon:Proceedings of the 2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME), 2017.
|
[24] |
MA Y, MITHRARATNE K, WILSON N, et al. Kinect v2-based gait analysis for children with cerebral palsy: validity and reliability of spatial margin of stability and spatiotemporal variables[J]. Sensors (Basel), 2021, 21(6): 2104.
|
[25] |
ELTOUKHY M, OH J, KUENZE C, et al. Improved Kinect-based spatiotemporal and kinematic treadmill gait assessment[J]. Gait Posture, 2017, 51: 77-83.
doi: S0966-6362(16)30602-6
pmid: 27721202
|
[26] |
SPRINGER S, YOGEV S G. Validity of the Kinect for gait assessment: a focused review[J]. Sensors (Basel), 2016, 16(2): 194.
|