《中国康复理论与实践》 ›› 2025, Vol. 31 ›› Issue (3): 274-286.doi: 10.3969/j.issn.1006-9771.2025.03.004
沈俊帆1,2, 耿阿燕1,2, 胡文萱2,3, 阚超杰3, 王彤1,2(), 郭川1,2(
)
收稿日期:
2024-11-27
修回日期:
2024-12-12
出版日期:
2025-03-25
发布日期:
2025-03-25
通讯作者:
郭川(1988-),男,汉族,江苏连云港市人,博士,副主任技师,主要研究方向:神经系统疾病康复治疗,E-mail:guochuan@njmu.edu.cn;王彤(1960-),女,汉族,江苏南京市人,教授,主任医师,博士研究生导师,主要研究方向:神经系统疾病康复,E-mail:wangtong60621@163.com。
作者简介:
沈俊帆(2001-),女,汉族,福建长汀县人,硕士研究生,主要研究方向:神经系统疾病康复治疗。
基金资助:
SHEN Junfan1,2, GENG Ayan1,2, HU Wenxuan2,3, KAN Chaojie3, WANG Tong1,2(), GUO Chuan1,2(
)
Received:
2024-11-27
Revised:
2024-12-12
Published:
2025-03-25
Online:
2025-03-25
Contact:
GUO Chuan, E-mail: Supported by:
摘要:
目的 分析皮质肌肉耦合(CMC)领域的研究现状、发展趋势及研究热点。
方法 检索自1999年至2024年Web of Science核心合集数据库中关于CMC的相关文献,采用CiteSpace 6.3R1软件对文献发文量、国家/地区、机构、作者、被引期刊、被引文献和关键词等多个维度进行综合评估,并结合关键词共现、聚类和突现词探讨研究热点和前沿动态。
结果 共纳入文献447篇。CMC研究发文量总体呈波动上升趋势,2023年达峰值。发文量最多的国家是中国,但中心性和国际合作较少,德国在学术影响力上处于领先地位。Aalto University和University of London为CMC研究的学术中心;最有学术影响力的是以Mathieu Bourguignon为代表的研究团队,其研究主要集中于CMC的生理机制和运动控制应用;Journal of Physiology-London是CMC领域最具影响力的期刊。CMC研究从分子机制到系统行为,深入探索神经科学与运动科学的交叉领域,并逐渐延伸至心理学和生物学基础研究,形成了多学科交融的研究体系。高关注度的关键词包括synchronization、motor cortex和precision grip task。当前研究的热点词汇包括connectivity、reorganization和activation。预测CMC技术的发展与应用、神经系统疾病的干预治疗、脑肌交互机制与信号处理等领域将成为未来一段时间内的研究热点。
结论 近年来,CMC研究取得了迅速发展,已成为运动功能评估和神经康复领域的重要方向。未来应聚焦优化CMC分析技术,提升其在脑机接口和个性化康复中的应用价值,加强跨学科合作和国际交流,进一步提高研究质量,增强全球影响力。
中图分类号:
沈俊帆, 耿阿燕, 胡文萱, 阚超杰, 王彤, 郭川. 皮质肌肉耦合分析在康复医学领域应用的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(3): 274-286.
SHEN Junfan, GENG Ayan, HU Wenxuan, KAN Chaojie, WANG Tong, GUO Chuan. Application of corticomuscular coherence in the field of rehabilitation medicine: a bibliometric analysis[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(3): 274-286.
表5
共被引频次前5的文章"
排名 | 文献 | 作者 | 年份 | 被引频次 |
---|---|---|---|---|
1 | Corticomuscular coherence and its applications: a review[ | Liu等 | 2019 | 43 |
2 | Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output[ | Kristeva等 | 2007 | 27 |
3 | Cortico-muscular coherence is reduced acutely post-stroke and increases bilaterally during motor recovery: a pilot study[ | Krauth等 | 2019 | 26 |
4 | Coupling between human brain activity and body movements: insights from non-invasive electromagnetic recordings[ | Bourguignon等 | 2019 | 25 |
5 | Contributions of descending and ascending pathways to corticomuscular coherence in humans[ | Witham等 | 2011 | 23 |
表6
高频及高中心性关键词"
排名 | 关键词 | 频次 | 关键词 | 中心性 |
---|---|---|---|---|
1 | synchronization | 136 | motor cortex | 0.16 |
2 | motor cortex | 121 | cortex | 0.15 |
3 | precision grip task | 82 | EEG | 0.12 |
4 | sensorimotor cortex | 82 | precision grip task | 0.11 |
5 | oscillations | 77 | human brain | 0.11 |
6 | EEG | 64 | synchronization | 0.10 |
7 | cortex | 53 | oscillations | 0.09 |
8 | isometric contraction | 52 | isometric contraction | 0.09 |
9 | human brain | 48 | EMG | 0.09 |
10 | EMG | 40 | physiological tremor | 0.09 |
[1] | PENG J Z, ZIKEREYA T, SHAO Z S, et al. The neuromechanical of beta-band corticomuscular coupling within the human motor system[J]. Front Neurosci, 2024, 18: 1441002. |
[2] | GAO Z, LÜ S, RAN X, et al. Influencing factors of corticomuscular coherence in stroke patients[J]. Front Hum Neurosci, 2024, 18: 1354332. |
[3] | LIU J B, SHENG Y X, LIU H H. Corticomuscular coherence and its applications[J]. Front Hum Neurosci, 2019, 13: 100. |
[4] | 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. |
CHEN Y, CHEN C M, LIU Z Y, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Stud Sci Sci, 2015, 33(2): 242-253. | |
[5] | XIE P. Study of international anticancer research trends via co-word and document co-citation visualization analysis[J]. Scientometrics, 2015, 105(1): 611-622. |
[6] | CHEN C. Searching for intellectual turning points: progressive knowledge domain visualization[J]. Proc Natl Acad Sci U S A, 2004, 101(Suppl 1): 5303-5310. |
[7] | LUO H, CAI Z, HUANG Y, et al. Study on pain catastrophizing from 2010 to 2020: a bibliometric analysis via CiteSpace[J]. Front Psychol, 2021, 12: 759347. |
[8] | LI Y, ZHENG J J, WU X, et al. Postural control of Parkinson's disease: a visualized analysis based on Citespace knowledge graph[J]. Front Aging Neurosci, 2023, 15: 1136177. |
[9] | CHEN C, DUBIN R, KIM M C. Emerging trends and new developments in regenerative medicine: a scientometric update (2000-2014)[J]. Expert Opin Biol Ther, 2014, 14(9): 1295-1317. |
[10] | ZHENG T, JIANG T, HUANG Z, et al. Knowledge domain and trend of disease-modifying therapies for multiple sclerosis: a study based on CiteSpace[J]. Heliyon, 2024, 10(5): e26173. |
[11] |
KRISTEVA R, PATINO L, OMLOR W. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output[J]. Neuroimage, 2007, 36(3): 785-792.
doi: 10.1016/j.neuroimage.2007.03.025 pmid: 17493837 |
[12] |
KRAUTH R, SCHWERTNER J, VOGT S, et al. Cortico-muscular coherence is reduced acutely post-stroke and increases bilaterally during motor recovery: a pilot study[J]. Front Neurol, 2019, 10: 126.
doi: 10.3389/fneur.2019.00126 pmid: 30842752 |
[13] | BOURGUIGNON M, JOUSMÄKI V, DALAI S S, et al. Coupling between human brain activity and body movements: Insights from non-invasive electromagnetic recordings[J]. Neuroimage, 2019, 203: 116177. |
[14] | WITHAM C L, RIDDLE C N, BAKER M R, et al. Contributions of descending and ascending pathways to corticomuscular coherence in humans[J]. J Physiol, 2011, 589(Pt 15): 3789-3800. |
[15] | FAUVET M, GASQ D, CHALARD A, et al. Temporal dynamics of corticomuscular coherence reflects alteration of the central mechanisms of neural motor control in post-stroke patients[J]. Front Hum Neurosci, 2021, 15: 682080. |
[16] | WANG Z, HUANG C, LI X. Research trends and hotspot analysis of conjunctival bacteria based on CiteSpace software[J]. Biomed Res Int, 2020, 2020: 2580795. |
[17] | ZHANG J, SONG L, XU L, et al. Knowledge domain and emerging trends in ferroptosis research: a bibliometric and knowledge-map analysis[J]. Front Oncol, 2021, 11: 686726. |
[18] |
石曼欣妤, 孟德涛, 方伯言. 帕金森病康复研究进展的可视化分析[J]. 中国康复理论与实践, 2022, 28(9): 1060-1064.
doi: 10.3969/j.issn.1006-9771.2022.09.008 |
SHI M X Y, MENG D T, FANG B Y. Advance in Parkinson's disease rehabilitation: a visualization analysis[J]. Chin J Rehabil Theory Pract, 2022, 28(9): 1060-1064. | |
[19] |
徐峰, 张秦, 陈小云, 等. 腰痛康复研究的文献计量学和可视化分析[J]. 中国康复理论与实践, 2021, 27(3): 349-360.
doi: 10.3969/j.issn.1006-9771.2021.03.017 |
XU F, ZHANG Q, CHEN X Y, et al. Advance in researches of low back pain: a bibliometrics and visualization study[J]. Chin J Rehabil Theory Pract, 2021, 27(3): 349-360. | |
[20] | KIRAZ M, DEMIR E. A bibliometric analysis of publications on spinal cord injury during 1980-2018[J]. World Neurosurg, 2020, 136: e504-e513. |
[21] |
BOURGUIGNON M, PIITULAINEN H, DE TIÈGE X, et al. Corticokinematic coherence mainly reflects movement-induced proprioceptive feedback[J]. Neuroimage, 2015, 106: 382-390.
doi: 10.1016/j.neuroimage.2014.11.026 pmid: 25463469 |
[22] | MONGOLD S J, PIITULAINEN H, LEGRAND T, et al. Temporally stable beta sensorimotor oscillations and corticomuscular coupling underlie force steadiness[J]. Neuroimage, 2022, 261. |
[23] | DÉMAS J, BOURGUIGNON M, BAILLY R, et al. Test-retest reliability of corticokinematic coherence in young children with cerebral palsy: an observational longitudinal study[J]. Neurophysiol Clin, 2024, 54(4): 102965. |
[24] | MONGOLD S J, GEORGIEV C, LEGRAND T, et al. Afferents to action: cortical proprioceptive processing assessed with corticokinematic coherence specifically relates to gross motor skills[J]. eNeuro, 2024, 11(1): ENEURO.0384-23.2023. |
[25] | NURMI T, HAKONEN M, BOURGUIGNON M, et al. Proprioceptive response strength in the primary sensorimotor cortex is invariant to the range of finger movement[J]. Neuroimage, 2023, 269: 119937. |
[26] | DE SETA V, TOPPI J, COLAMARINO E, et al. Cortico-muscular coupling to control a hybrid brain-computer interface for upper limb motor rehabilitation: a pseudo-online study on stroke patients[J]. Front Hum Neurosci, 2022, 16: 1016862. |
[27] | CHOWDHURY A, DUTTA A, PRASAD G. Corticomuscular co-activation based hybrid brain-computer interface for motor recovery monitoring[J]. IEEE Access, 2020, 8: 174542-174557. |
[28] |
PICHIORRI F, TOPPI J, DE SETA V, et al. Exploring high-density corticomuscular networks after stroke to enable a hybrid brain-computer interface for hand motor rehabilitation[J]. J Neuroeng Rehabil, 2023, 20(1): 5.
doi: 10.1186/s12984-023-01127-6 pmid: 36639665 |
[29] | COLAMARINO E, DE SETA V, MASCIULLO M, et al. Corticomuscular and intermuscular coupling in simple hand movements to enable a hybrid brain-computer interface[J]. Int J Neural Syst, 2021, 31(11): 2150052. |
[30] | GAO L, WU H J, CHENG W, et al. Enhanced descending corticomuscular coupling during hand grip with static force compared with enhancing force[J]. Clin EEG Neurosci, 2021, 52(6): 436-443. |
[31] | KHADEMI F, NAROS G, NICKSIRAT A, et al. Rewiring cortico-muscular control in the healthy and poststroke human brain with proprioceptive β-band neurofeedback[J]. J Neurosci, 2022, 42(36): 6861-6877. |
[32] | BRAMBILLA C, PIROVANO I, MIRA R M, et al. Combined use of EMG and EEG techniques for neuromotor assessment in rehabilitative applications: a systematic review[J]. Sensors, 2021, 21(21): 7014. |
[33] | SUN J, JIA T, LI Z, et al. Enhancement of EEG-EMG coupling detection using corticomuscular coherence with spatial-temporal optimization[J]. J Neural Eng, 2023, 20(3). doi: 10.1088/1741-2552/accd9b. |
[34] | SUN J, JIA T, LIN P J, et al. Multiscale canonical coherence for functional corticomuscular coupling analysis[J]. IEEE J Biomed Health Inform, 2024, 28(2): 812-822. |
[35] | CHEN X, ZHANG Y, CHENG S, et al. Transfer spectral entropy and application to functional corticomuscular coupling[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(5): 1092-1102. |
[36] | ZOKAEI N, QUINN A J, HU M T, et al. Reduced cortico-muscular beta coupling in Parkinson's disease predicts motor impairment[J]. Brain Commun, 2021, 3(3): fcab179. |
[37] |
SANTOS P, HEIMLER B, KOREN O, et al. Dopamine improves defective cortical and muscular connectivity during bilateral control of gait in Parkinson's disease[J]. Commun Biol, 2024, 7(1): 495.
doi: 10.1038/s42003-024-06195-5 pmid: 38658666 |
[38] |
DELCAMP C, CORMIER C, CHALARD A, et al. Botulinum toxin combined with rehabilitation decrease corticomuscular coherence in stroke patients[J]. Clin Neurophysiol, 2022, 136: 49-57.
doi: 10.1016/j.clinph.2021.12.019 pmid: 35131638 |
[39] | XU R, ZHANG H, LIU S, et al. cTBS over primary motor cortex increased contralateral corticomuscular coupling and interhemispheric functional connection[J]. J Neural Eng, 2024, 21(1). doi: 10.1088/1741-2552/ad1dc4. |
[40] | CHEN X L, XIE P, ZHANG Y Y, et al. Abnormal functional corticomuscular coupling after stroke[J]. Neuroimage Clin, 2018, 19: 147-159. |
[41] | BAO S C, CHEN C, YUAN K, et al. Disrupted cortico-peripheral interactions in motor disorders[J]. Clin Neurophysiol, 2021, 132(12): 3136-3151. |
[42] |
CREMOUX S, TALLET J, DAL MASO F, et al. Impaired corticomuscular coherence during isometric elbow flexion contractions in humans with cervical spinal cord injury[J]. Eur J Neurosci, 2017, 46(4): 1991-2000.
doi: 10.1111/ejn.13641 pmid: 28699218 |
[43] | WANG T, TANG J, XI X, et al. Corticomuscular coupling analysis in stroke rehabilitation based on variational mode decomposition-transfer entropy[J]. IEEE Trans Neural Syst Rehabil Eng, 2024, 32: 3506-3514. |
[1] | 冯娟, 李新通, 蔡娇艳, 赵胜国, 潘玮敏. 2015年至2024年本体感觉训练对前交叉韧带损伤康复效果的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(3): 287-295. |
[2] | 向松柏, 周雯慧, 王崇高. 2004年至2024年机器人在孤独症谱系障碍儿童康复中应用的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(2): 158-164. |
[3] | 张琦, 孙文玉, 高振梅, 刘睿, 张天奥. 非侵入性脑刺激在阿尔茨海默病中应用的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(2): 194-208. |
[4] | 刘京宇, 杨延砚, 张元鸣飞, 刘小燮, 张娜, 张之良, 周谋望. 2023年度国家康复医学专业医疗服务与质量安全报告[J]. 《中国康复理论与实践》, 2025, 31(1): 1-20. |
[5] | 秦晴, 刘叶, 叶海燕, 李晨, 陈迪. 上肢机器人辅助干预脑卒中的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(1): 85-98. |
[6] | 张璐, 马江平, 杨二丽, 陈秋华, 董丽军, 尹小兵. 认知-运动双重任务训练应用于脑卒中的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(9): 1034-1042. |
[7] | 何鋆怡, 王海芳, 陈健, 孔乔, 徐敏杰, 常静玲. 基于语言任务的任务态功能磁共振成像在神经精神疾病领域应用的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(8): 930-938. |
[8] | 陈梦缘, 王秋琴, 徐语晨, 刘洁, 张馨悦, 陈菊萍, 徐桂华. 帕金森病疼痛相关研究的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(7): 797-803. |
[9] | 叶睿雪, 王玉龙, 高焱, 薛凯文, 张泽宇, 闫杰, 邹瑜聪, 但果. 中国多层次康复服务体系文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 630-638. |
[10] | 胥琪玲, 姜晓煜, 毕鸿雁. 近10年非侵入性脑刺激治疗帕金森病的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 665-674. |
[11] | 杨彬, 刘明月, 高丹, 李哲. 经颅直流电刺激在脑卒中康复中应用的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 675-685. |
[12] | 李艳丽, 刘兰群, 徐基民, 王海芳. 脑卒中后足下垂相关研究的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 686-692. |
[13] | 张哲, 董献文, 徐成铭, 胡文静, 贺婷丽, 崔鑫鑫, 徐红艳, 周章盈, 韩雅男. 近10年脑电图应用于孤独症谱系障碍领域研究的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 693-700. |
[14] | 杨榕, 王倩, 訾阳, 陈怡婷, 李映彩, 冷军. 近10年脑机接口技术用于康复医学领域的可视化分析[J]. 《中国康复理论与实践》, 2024, 30(4): 416-423. |
[15] | 黄龙贤, 左燕, 陈丽梅, 顾思佳, 蒋金梅, 张志伟. 近20年吞咽障碍患者误吸研究动态的可视化分析[J]. 《中国康复理论与实践》, 2024, 30(3): 292-302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|