《中国康复理论与实践》 ›› 2024, Vol. 30 ›› Issue (6): 686-692.doi: 10.3969/j.issn.1006-9771.2024.06.008
李艳丽1,2, 刘兰群1,2, 徐基民1,2, 王海芳3()
收稿日期:
2024-02-18
修回日期:
2024-04-30
出版日期:
2024-06-25
发布日期:
2024-07-03
通讯作者:
王海芳,E-mail: whf19910817@163.com
作者简介:
李艳丽(1984-),女,汉族,山东潍坊市人,博士,主治医师,主要研究方向:中医药防治脑病。
基金资助:
LI Yanli1,2, LIU Lanqun1,2, XU Jimin1,2, WANG Haifang3()
Received:
2024-02-18
Revised:
2024-04-30
Published:
2024-06-25
Online:
2024-07-03
Supported by:
摘要:
目的 分析脑卒中后足下垂领域内的研究动态和前沿趋势。
方法 检索建库至2024年1月Web of Science Core Collection数据库中脑卒中后足下垂的相关文献,采用CiteSpace 6.2.R2和VOSviewer 1.6.19进行可视化分析。
结果 共检索到490篇文献。1992年以后发文量逐年增加,2020年最多。研究机构以美国的机构为主。文献聚焦于医学、医疗和临床领域,康复学文献最多,达到230篇。高频率关键词有康复、偏瘫步态、电刺激、足下垂和脑卒中等。通过关键词共现分析,形成关于运动康复、神经康复技术、步态分析、功能性恢复技术、康复治疗效果评估等10个主要聚类。
结论 脑卒中后足下垂的康复研究正朝着技术与治疗方法相融合、注重运动功能评估和治疗效果证据,以及个体化康复方案的方向发展。
中图分类号:
李艳丽, 刘兰群, 徐基民, 王海芳. 脑卒中后足下垂相关研究的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 686-692.
LI Yanli, LIU Lanqun, XU Jimin, WANG Haifang. Post-stroke foot drop research: a bibliometrics analysis[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(6): 686-692.
[1] | SONG S, PARK J, SONG G, et al. Usability of the Thera-Band® to improve foot drop in stroke survivors[J]. NeuroRehabilitation, 2018, 42(4): 505-510. |
[2] |
FEIGIN V L, BRAININ M, NORRVING B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29.
doi: 10.1177/17474930211065917 pmid: 34986727 |
[3] | DUNNING K, O'DELL M W, KLUDING P, et al. Peroneal stimulation for foot drop after stroke: a systematic review[J]. Am J Phys Med Rehabil, 2015, 94(8): 649-664. |
[4] |
SHI D, LI Z, YANG J, et al. Symptom experience and symptom burden of patients following first-ever stroke within 1 year: a cross-sectional study[J]. Neural Regen Res, 2018, 13(11): 1907-1912.
doi: 10.4103/1673-5374.239440 pmid: 30233063 |
[5] |
DE WIT D C, BUURKE J H, NIJLANT J M, et al. The effect of an ankle-foot orthosis on walking ability in chronic stroke patients: a randomized controlled trial[J]. Clin Rehabil, 2004, 18(5): 550-557.
pmid: 15293489 |
[6] |
ALNAJJAR F, ZAIER R, KHALID S, et al. Trends and technologies in rehabilitation of foot drop: a systematic review[J]. Expert Rev Med Devices, 2021, 18(1): 31-46.
doi: 10.1080/17434440.2021.1857729 pmid: 33249938 |
[7] | SUN M, JIANG C, ZHANG J, et al. Meta-analysis of functional electrical stimulation combined with occupational therapy on post-stroke limb functional recovery and quality of life[J]. [ahead of print]. Cerebrovasc Dis, 2023. DOI: 10.1159/000535470. |
[8] |
王海芳, 徐敏杰, 李颖, 等. 脑卒中领域功能性近红外光谱技术研究的可视化分析[J]. 中国康复理论与实践, 2023, 29(12): 1405-1419.
doi: 10.3969/j.issn.1006-9771.2023.12.005 |
WANG H F, XU M J, LI Y, et al. Application of functional near-infrared spectroscopy in stroke: a visualized analysis[J]. Chin J Rehabil Theory Pract, 2023, 29(12): 1405-1419. | |
[9] |
徐敏杰, 王博, 周莉, 等. 基于Web of Science数据库脑卒中后语言与非语言认知功能研究的可视化分析[J]. 中国康复理论与实践, 2023, 29(4): 452-464.
doi: 10.3969/j.issn.1006-9771.2023.04.011 |
XU M J, WANG B, ZHOU L, et al. Visual analysis of post-stroke verbal and non-verbal cognitive function studies based on Web of Science database[J]. Chin J Rehabil Theory Pract, 2023, 29(4): 452-464. | |
[10] | BASMAJIAN J V, KUKULKA C G, NARAYAN M G, et al. Biofeedback treatment of foot-drop after stroke compared with standard rehabilitation technique: effects on voluntary control and strength[J]. Arch Phys Med Rehabil, 1975, 56(6): 231-236. |
[11] |
FLOM R P, QUAST J E, BOLLER J D, et al. Biofeedback training to overcome poststroke foot-drop[J]. Geriatrics, 1976, 31(12): 47-51.
pmid: 1001900 |
[12] | TAKEBE K, BASMAJIAN J V. Gait analysis in stroke patients to assess treatments of foot-drop[J]. Arch Phys Med Rehabil, 1976, 57(1): 305-310. |
[13] | TAKEBE K, KUKULKA C G, NARAYAN M G, et al. Biofeedback treatment of foot drop after stroke compared with standard rehabilitation technique (part 2): effects on nerve conduction velocity and spasticity[J]. Arch Phys Med Rehabil, 1976, 57(1): 9-11. |
[14] |
MASSEY E W. Peroneal palsy in stroke patients[J]. Postgrad Med, 1982, 71(6): 109-111, 114.
pmid: 7079199 |
[15] | RIBEIRO T S, GOMES DE SOUZA E S E M, REGALADO I C R, et al. Effects of load addition during gait training on weight-bearing and temporal asymmetry after stroke: a randomized clinical trial[J]. Am J Phys Med Rehabil, 2020, 99(3): 250-256. |
[16] | ARNEZ-PANIAGUA V, RIFAI H, AMIRAT Y, et al. Adaptive control of an actuated-ankle-foot-orthosis[J]. IEEE Int Conf Rehabil Robot, 2017, 2017: 1584-1589. |
[17] | LING H, GUO H, ZHOU H, et al. Effect of a rigid ankle foot orthosis and an ankle foot orthosis with an oil damper plantar flexion resistance on pelvic and thoracic movements of patients with stroke during gait[J]. Biomed Eng Online, 2023, 22(1): 9. |
[18] | MIJIC M, SCHOSER B, YOUNG P. Efficacy of functional electrical stimulation in rehabilitating patients with foot drop symptoms after stroke and its correlation with somatosensory evoked potentials-a crossover randomised controlled trial[J]. Neurol Sci, 2023, 44(4): 1301-1310. |
[19] | ALLEN C B, WILLIAMSON T K, NORWOOD S M, et al. Do Electrical stimulation devices reduce pain and improve function?: a comparative review[J]. Pain Ther, 2023, 12(6): 1339-1354. |
[20] |
SABUT S K, BHATTACHARYA S D, MANJUNATHA M. Functional electrical stimulation on improving foot drop gait in poststroke rehabilitation: a review of its technology and clinical efficacy[J]. Crit Rev Biomed Eng, 2013, 41(2): 149-160.
doi: 10.1615/critrevbiomedeng.2013007621 pmid: 24580568 |
[21] | CHOI J B, LEE S H, PARK J S. Kinesiology taping and ankle foot orthosis equivalent therapeutic effects on gait function in stroke patients with foot drop: a preliminary study[J]. Medicine (Baltimore), 2023, 102(28): e34343. |
[22] |
THITITHUNWARAT N, KRITYAKIARANA W, KHEOWSRI S, et al. The effect of a modified elastic band orthosis on gait and balance in stroke survivors[J]. Prosthet Orthot Int, 2023, 47(5): 466-472.
doi: 10.1097/PXR.0000000000000205 pmid: 36752760 |
[23] |
FEUVRIER F, SIJOBERT B, AZEVEDO C, et al. Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome[J]. Ann Phys Rehabil Med, 2020, 63(3): 195-201.
doi: S1877-0657(19)30057-0 pmid: 31009801 |
[24] | LIN K W, HU C J, YANG W W, et al. Biomechanical evaluation and strength test of 3D-printed foot orthoses[J]. Appl Bionics Biomech, 2019, 2019: 4989534. |
[25] |
NUSSBAUM E L, HOUGHTON P, ANTHONY J, et al. Neuromuscular electrical stimulation for treatment of muscle impairment: critical review and recommendations for clinical practice[J]. Physiother Can, 2017, 69(5): 1-76.
doi: 10.3138/ptc.2015-88 pmid: 29162949 |
[26] | HEFTER H, NICKELS W, ROSENTHAL D, et al. Continuous increase of efficacy under repetitive injections of Botulinum toxin type/A beyond the first treatment for adult spastic foot drop[J]. Toxins (Basel), 2021, 13(7): 466. |
[27] | HARUYAMA K, KAWAKAMI M, OKADA K, et al. Pelvis-toe distance: 3-dimensional gait characteristics of functional limb shortening in hemiparetic stroke[J]. Sensors (Basel), 2021, 21(16): 5417. |
[28] | ZHUANG Y, LENG Y, ZHOU J, et al. Voluntary control of an ankle joint exoskeleton by able-bodied individuals and stroke survivors using EMG-based admittance control scheme[J]. IEEE Trans Biomed Eng, 2021, 68(2): 695-705. |
[29] | FU Y, ZHOU Z, GONG A, et al. Decoding of motor coordination imagery involving the lower limbs by the EEG-based brain network[J]. Comput Intell Neurosci, 2021, 2021: 5565824. |
[30] |
OUTERMANS J C, VAN PEPPEN R P, WITTINK H, et al. Effects of a high-intensity task-oriented training on gait performance early after stroke: a pilot study[J]. Clin Rehabil, 2010, 24(11): 979-987.
doi: 10.1177/0269215509360647 pmid: 20719820 |
[31] | MORELAND J D, THOMSON M A, FUOCO A R. Electromyographic biofeedback to improve lower extremity function after stroke: a meta-analysis[J]. Arch Phys Med Rehabil, 1998, 79(2): 134-140. |
[32] | MATHUNNY J J, KARTHIK V, DEVARAJ A, et al. A scoping review on recent trends in wearable sensors to analyze gait in people with stroke: from sensor placement to validation against gold-standard equipment[J]. Proc Inst Mech Eng H, 2023, 237(3): 309-326. |
[33] | ZHONG B, GUO K, YU H, et al. Toward gait symmetry enhancement via a cable-driven exoskeleton powered by series elastic actuators[J]. IEEE Robotics Autom Lett, 2022, 7(2): 786-793. |
[34] | NEVISIPOUR M, HONEYCUTT C F. Investigating the underlying biomechanical mechanisms leading to falls in long-term ankle-foot orthosis and functional electrical stimulator users with chronic stroke[J]. Gait Posture, 2022, 92: 144-152. |
[35] |
KARAKKATTIL P S, TRUDELLE-JACKSON E, MEDLEY A, et al. Effects of two different types of ankle-foot orthoses on gait outcomes in patients with subacute stroke: a randomized crossover trial[J]. Clin Rehabil, 2020, 34(8): 1094-1102.
doi: 10.1177/0269215520927738 pmid: 32573271 |
[36] | SHI B, CHEN X, YUE Z, et al. Wearable ankle robots in post-stroke rehabilitation of gait: a systematic review[J]. Front Neurorobot, 2019, 13: 63. |
[37] | ZOLLO L, ZACCHEDDU N, CIANCIO A L, et al. Comparative analysis and quantitative evaluation of ankle-foot orthoses for foot drop in chronic hemiparetic patients[J]. Eur J Phys Rehabil Med, 2015, 51(2): 185-196. |
[38] | ZHU Y H, RUAN M, YUN R S, et al. Is leg-driven treadmill-based exoskeleton robot training beneficial to poststroke patients: a systematic review and meta-analysis[J]. Am J Phys Med Rehabil, 2023, 102(4): 331-339. |
[39] | ABEY-NESBIT R, SCHLUTER P J, WILKINSON T J, et al. Risk factors for injuries in New Zealand older adults with complex needs: a national population retrospective study[J]. BMC Geriatr, 2021, 21(1): 630. |
[40] | KARNIEL N, RAVEH E, SCHWARTZ I, et al. Functional electrical stimulation compared with ankle-foot orthosis in subacute post stroke patients with foot drop: a pilot study[J]. Assist Technol, 2021, 33(1): 9-16. |
[41] | HE X, LEI L, YU G, et al. Asymmetric cortical activation in healthy and hemiplegic individuals during walking: a functional near-infrared spectroscopy neuroimaging study[J]. Front Neurol, 2022, 13: 1044982. |
[42] | TANG H F, YANG B, LIN Q, et al. Dynamic biomechanical effect of lower body positive pressure treadmill training for hemiplegic gait rehabilitation after stroke: a case report[J]. World J Clin Cases, 2021, 9(3): 632-638. |
[43] | BARRIOS-MURIEL J, ROMERO-SÁNCHEZ F, ALONSO-SÁNCHEZ F J, et al. Advances in orthotic and prosthetic manufacturing: a technology review[J]. Materials (Basel), 2020, 13(2): 295. |
[44] | ZHAO H, XU H, WANG Z, et al. Analysis and evaluation of hemiplegic gait based on wearable sensor network[J]. Inf Fusion, 2023, 90: 382-391. |
[45] | CHO J E, LEE W H, SHIN J H, et al. Effects of bi-axial ankle strengthening on muscle co-contraction during gait in chronic stroke patients: a randomized controlled pilot study[J]. Gait Posture, 2021, 87: 177-183. |
[46] | MOHAN D M, KHANDOKER A H, WASTI S A, et al. Assessment methods of post-stroke gait: a scoping review of technology-driven approaches to gait characterization and analysis[J]. Front Neurol, 2021, 12: 650024. |
[47] | MULDER L, ONUR O, KLEIS L, et al. Atypical neurologic presentations of new onset type 1 diabetes mellitus in pediatric age group: a report of five unusual cases and review of the literature[J]. J Pediatr Endocrinol Metab, 2014, 27(7/8): 749-756. |
[48] | GANDOLLA M, NIERO L, MOLTENI F, et al. Brain plasticity mechanisms underlying motor control reorganization: pilot longitudinal study on post-stroke subjects[J]. Brain Sci, 2021, 11(3): 329. |
[49] |
STAEKENBORG S S, VAN DER FLIER W M, VAN STRAATEN E C, et al. Neurological signs in relation to type of cerebrovascular disease in vascular dementia[J]. Stroke, 2008, 39(2): 317-322.
doi: 10.1161/STROKEAHA.107.493353 pmid: 18096841 |
[1] | 叶睿雪, 王玉龙, 高焱, 薛凯文, 张泽宇, 闫杰, 邹瑜聪, 但果. 中国多层次康复服务体系文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 630-638. |
[2] | 胥琪玲, 姜晓煜, 毕鸿雁. 近10年非侵入性脑刺激治疗帕金森病的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 665-674. |
[3] | 杨彬, 刘明月, 高丹, 李哲. 经颅直流电刺激在脑卒中康复中应用的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 675-685. |
[4] | 张哲, 董献文, 徐成铭, 胡文静, 贺婷丽, 崔鑫鑫, 徐红艳, 周章盈, 韩雅男. 近10年脑电图应用于孤独症谱系障碍领域研究的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 693-700. |
[5] | 杨世宁, 马将, 李红, 郭立颖, 刘先莹, 张莉芳. 不同病程脑卒中患者上肢体感诱发电位与感觉、运动功能的相关性[J]. 《中国康复理论与实践》, 2024, 30(6): 701-708. |
[6] | 王雪, 王立平, 宋宁, 刘兰群, 周洁, 吴珺. 脑卒中后眼球运动障碍行为视觉训练的效果[J]. 《中国康复理论与实践》, 2024, 30(6): 726-730. |
[7] | 韦添元, 林煜凡, 何怡, 宋明洁, 李晁金子, 张庆苏, 杜晓霞. 计算机辅助训练对脑卒中后构音障碍患者的效果[J]. 《中国康复理论与实践》, 2024, 30(5): 520-525. |
[8] | 徐冬艳, 王卫宁, 潘力, 刘罡, 刘加鹏, 吴毅, 朱玉连. 基于丰富环境理论的多感官反馈步态训练对脑卒中患者步行功能的效果[J]. 《中国康复理论与实践》, 2024, 30(5): 526-534. |
[9] | 熊杏秀, 张正辉, 邓春燕, 李云波, 陈镇鹏, 李元杰, 宋景. 减重结合功能性电刺激对脑卒中患者下肢运动功能的疗效[J]. 《中国康复理论与实践》, 2024, 30(5): 554-559. |
[10] | 黄崧华, 凌骏麒, 高天昊, 黄仪佳, 白玉龙. 动态腕手矫形器结合改良强制性运动疗法对脑卒中偏瘫患者上肢和手功能障碍的效果[J]. 《中国康复理论与实践》, 2024, 30(5): 606-612. |
[11] | 郑建玲, 刘惠林, 朱琳, 顾彬, 颜如秀, 赵圻, 宋鲁平. 早期悬吊保护下智能助行训练对脑卒中后运动和行走功能的效果[J]. 《中国康复理论与实践》, 2024, 30(4): 431-436. |
[12] | 粟昭隐, 康巍瀚, 刘亚涛, 吕媛, Michael NERLICH. 中国中老年人身体活动水平与脑卒中发生的相关性:基于CHARLS数据[J]. 《中国康复理论与实践》, 2024, 30(4): 449-453. |
[13] | 刘杏, 周玉梅, 徐惠丽, 彭剑英, 谢喆书, 邢利民, 赵军. 中青年重症脑卒中患者主要照顾者预期性悲伤影响因素的结构方程模型构建[J]. 《中国康复理论与实践》, 2024, 30(4): 454-461. |
[14] | 陈园月, 李加斌, 蒯凤, 彭丽丽, 项洁. 多通道功能性电刺激结合任务导向训练对脑卒中上肢偏瘫患者脑功能网络的即刻影响[J]. 《中国康复理论与实践》, 2024, 30(4): 462-467. |
[15] | 魏辰, 王子贤, 李淑璠, 王芃, 贾舒祺, 田英. 镜像疗法对脑卒中患者上肢运动功能和日常生活活动能力影响的Meta分析[J]. 《中国康复理论与实践》, 2024, 30(3): 281-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|