[1] 周永战,陈佩杰,郑莉芳,等.废用性肌萎缩的发生机制及治疗策略[J].中国康复医学杂志, 2017, 32(11): 1307-1313. [2] 罗琳,杨金鹏,王松涛,等.肥胖性肌肉萎缩的分子机制研究进展[J].中国康复理论与实践, 2017, 23(5): 553-557. [3] van de WorpW R P H, TheysJ, van HelvoortA, et al. Regulation of muscle atrophy by microRNAs: 'AtromiRs' as potential target in cachexia [J]. Curr Opin Clin Nutr Metab Care, 2018, 21(6): 423-429. [4] 李积永,于新凯,李莎莎. miRNAs 在骨骼肌损伤修复过程中的调控作用[J]. 解剖科学进展, 2014, 20(2): 162-166. [5] 马淑梅,陈瑶,刘莉. 肌肉萎缩症治疗的研究进展[J]. 世界临床药物, 2017, 38(11): 790-792. [6] YuY, ChuW, ChaiJ, et al. Critical role of miRNAs in mediating skeletal muscle atrophy (Review) [J]. Mol Med Rep, 2015, 13(2): 1470-1474. [7] HorakM, NovakJ, Bienertova-vaskuJ. Muscle-specific microRNAs in skeletal muscle development [J]. Dev Biol, 2016, 410(1): 1-13. [8] WangY, LuoJ, HongZ, et al. microRNAs in the same clusters evolve to coordinately regulate functionally related genes [J]. Mol Biol Evol, 2016, 33(9): 2232-2247. [9] 朱琪,姚新苗,徐守宇. 骨骼肌萎缩信号通路的研究进展[J]. 中国康复医学杂志, 2016, 31(12): 1408-1412. [10] KimH, JangM, ParkR, et al. Conessine treatment reduces dexamethasone-induced muscle atrophy by regulating MuRF1 and atrogin-1 expression [J]. J Microbiol Biotechnol, 2018, 28(4): 520-526. [11] ZhangA, LiM, WangB, et al. miRNA-23a/27a attenuates muscle atrophy and renal fibrosis through muscle-kidney cross talk [J]. J Cachexia Sarcopenia Muscle, 2018, 9(4): 755-770. [12] WangB, ZhangC, ZhangA, et al. microRNA-23a and microRNA-27a mimic exercise by ameliorating CKD-induced muscle atrophy [J]. J Am Soc Nephrol, 2017, 28(9): 2631-2640. [13] XuJ, LiR, WorkenehB, et al. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486 [J]. Kidney Int, 2012, 82(4): 401-411. [14] HudsonM B, RahnertJ A, ZhengB, et al. miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle [J]. Am J Physiol Cell Physiol, 2014, 307(4): C314-C319. [15] HeQ, QiuJ, DaiM, et al. microRNA-351 inhibits denervation-induced muscle atrophy by targeting TRAF6 [J]. Exp Ther Med, 2016, 12(6): 4029-4034. [16] WangX H, EscobarE M, ZhangA, et al. Muscle-kidney crosstalk through microRNA-29 in chronic kidney disease mouse [J]. FASEB J, 2017, 31(1): 1021.19. [17] LiuC, WangM, ChenM, et al. miR-18a induces myotubes atrophy by down-regulating IgfI [J]. Int J Biochem Cell Biol, 2017, 90: 145-154. [18] HuL, KleinJ D, HassounahF, et al. Low-frequency electrical stimulation attenuates muscle atrophy in CKD—A potential treatment strategy [J]. J Am Soc Nephrol, 2015, 26(3): 626-635. [19] KyeM J, NiederstE D, WertzM H, et al. SMN regulates axonal local translation via miR-183/mTOR pathway [J]. Hum Mol Genet, 2014, 23(23): 6318-6331. [20] 张瑾,金波,施海明. 哺乳动物雷帕霉素靶蛋白信号通路上的miRNA调控[J]. 复旦学报(医学版), 2016, 43(5): 603-609. [21] PellegrinoM A, DesaphyJ F, BroccaL, et al. Redox homeostasis, oxidative stress and disuse muscle atrophy [J]. J Physiol, 2011, 589(Pt 9): 2147-2160. [22] LiuD, SunX, YeP. miR-31 overexpression exacerbates atherosclerosis by targeting NOX4 in apoE(-/-) mice [J]. Clin Lab, 2015, 61(11): 1617-1624. [23] Fierro-FernándezM, óBusnadiego, SandovalP, et al. miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2 [J]. EMBO Rep, 2015, 16(10): 1358-1377. [24] SrinivasanH, DasS. Mitochondrial miRNA (MitomiR): a new player in cardiovascular health [J]. Can J Physiol Pharmacol, 2015, 93(10): 855-861. [25] KuosmanenS M, SihvolaV, KansanenE, et al. MicroRNAs mediate the senescence-associated decline of NRF2 in endothelial cells [J]. Redox Biol, 2018, 18: 77-83. [26] 谷仕艳,陈虹宇,张遵真. 微小RNA与氧化应激相互调控在疾病发生发展中的研究进展[J]. 现代预防医学, 2017, 44(2): 306-309. [27] DavisC, DukesA, DrewryM, et al. microRNA-183-5p increases with age in bone-derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence [J]. Tissue Eng Part A, 2017, 23(21): 1231-1240. [28] WanQ, YeungS S, CheungK K, et al. Optimizing electric stimulation for promoting satellite cell proliferation in muscle disuse atrophy [J]. Am J Phys Med Rehabil, 2016, 95(1): 28-38. [29] 汤志雄,苟德明. miRNA调控成肌分化的研究进展[J]. 中国生物工程杂志, 2017, 37(10): 103-110. [30] LiG, LiQ S, LiW B, et al. miRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy [J]. Neural Regen Res, 2016, 11(8): 1293-1303. [31] AmiroucheA, JahnkeV E, LundeJ A, et al. Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations [J]. Am J Physiol Cell Physiol, 2017, 312(3): C209-C221. [32] 刘泽远,张文苹,黄强开,等.被动运动干预对大鼠失神经萎缩骨骼肌中miRNA-1表达和成肌细胞分化的影响[J].中国修复重建外科杂志, 2016, 30(5): 612-618. [33] ZhangY, YuB, HeJ, et al. From nutrient to microRNA: a novel insight into cell signaling involved in skeletal muscle development and disease [J]. Int J Biol Sci, 2016, 12(10): 1247-1261. [34] 何玉童,张马辉,宋晨,等. 周期性机械拉伸促进C2C12细胞成肌过程中microRNA表达谱分析[J]. 中国组织工程研究, 2017, 21(28): 4505-4511. [35] EscobarE M, WangX, HassounahF, et al. The impact of microRNA 23/27 on muscle atrophy in diabetic mice [J]. FASEB J, 2017, 31(1): 1021.18. [36] ZhangZ K, LiJ, GuanD, et al. A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration [J]. J Cachexia Sarcopenia Muscle, 2018, 9(3): 613-626. [37] HouL, XuJ, JiaoY, et al. MiR-27b promotes muscle development by inhibiting MDFI expression [J]. Cell Physiol Biochem, 2018, 46(6): 2271-2283. [38] WangM, LiuC, SuY, et al. miRNA-34c inhibits myoblasts proliferation by targeting YY1 [J]. Cell Cycle, 2017, 16(18): 1661-1672. [39] 杨胜波. 运动神经元损伤致肌萎缩的相关机制研究进展[J]. 遵义医学院学报, 2015, 38(6): 560-566. [40] 巩彦龙,宋敏,刘涛,等. miRNA与血管新生相关细胞因子的研究进展[J]. 临床心血管病杂志, 2016, 32(9): 877-881. [41] MellisD, RoseL, MartelloA, et al. 196 functional high-throughput screening identifies microrna-26b as pro-survival and angiogeneic factor for endothelial cells [J]. Heart, 2017, 103(Suppl 5): A133.2-A133. [42] 吴广升. miRNA在组织再生领域的研究进展[J]. 青岛大学医学院学报, 2017, 53(4): 496-498. [43] SinghB N, TaharaN, KawakamiY, et al. Etv2-miR-130a-Jarid2 cascade regulates vascular patterning during embryogenesis [J]. PLoS One, 2017, 12(12): e0189010. [44] LeeG, LimJ Y, FronteraW R. Apoptosis in young and old denervated rat skeletal muscle [J]. Muscle Nerve, 2017, 55(2): 262-269. [45] HaiderK H, IdrisN M, KimH W, et al. microRNA-21 is a key determinant in IL-11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts [J]. Cardiovasc Res, 2010, 88(1): 168-178. [46] ChenY, MeltonD W, GelfondJ A, et al. miR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation [J]. Physiol Genomics, 2012, 44(21): 1042-1051. [47] AlexanderM S, CasarJ C, MotohashiN, et al. microRNA-486-dependent modulation of DOCK3/PTEN/Akt signaling pathways improves muscular dystrophy-associated symptoms [J]. J Clin Invest, 2014, 124(6): 2651-2667. [48] 刘卜玮,蔡明成,杨雪,等. microRNA调控细胞凋亡的研究进展[J]. 生理科学进展, 2018, 49(4): 309-314. [49] XuZ, BuY, ChitnisN, et al. miR-216b regulation of cJun mediates GADD153/CHOP-dependent apoptosis [J]. Nat Commun, 2016, 7: 11422. |