《中国康复理论与实践》 ›› 2023, Vol. 29 ›› Issue (11): 1359-1364.doi: 10.3969/j.issn.1006-9771.2023.11.015

• 辅助技术 • 上一篇    

不同头戴式虚拟现实对人体平衡与姿势控制的影响

张恒瑞, 孟昭莉(), 崔配, 王瑞怡   

  1. 大连理工大学,辽宁大连市 116024
  • 收稿日期:2023-01-11 修回日期:2023-07-12 出版日期:2023-11-25 发布日期:2023-11-30
  • 通讯作者: 孟昭莉(1964-),女,汉族,吉林白城市人,硕士,教授,主要研究方向:运动人体科学。E-mail: mengzl@dlut.edu.cn
  • 作者简介:张恒瑞(1998-),男,汉族,黑龙江哈尔滨市人,硕士,主要研究方向:运动人体科学。
  • 基金资助:
    大连市科技创新基金项目(2018J13SN113)

Impact of different kinds of helmet-mounted display on human balance and posture control

ZHANG Hengrui, MENG Zhaoli(), CUI Pei, WANG Ruiyi   

  1. Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2023-01-11 Revised:2023-07-12 Published:2023-11-25 Online:2023-11-30
  • Contact: MENG Zhaoli, E-mail: mengzl@dlut.edu.cn
  • Supported by:
    Dalian Science and Technology Innovation Fund(2018J13SN113)

摘要:

目的 观察不同类型虚拟现实(VR)环境平衡训练对人体平衡与姿势控制的影响。

方法 2022年3月至4月,在大连理工大学招募在校男性大学生30例,分别接受动、静态背景的VR平衡训练。两次试验间隔1周。每次干预前后测量睁眼稳定平面站立、闭眼稳定平面站立、静态VR稳定平面站立、动态VR稳定平面站立、睁眼海绵垫上站立、闭眼海绵垫上站立、静态VR海绵垫上站立、动态VR海绵垫上站立8种条件下压力中心(COP)平均移动速度;计算人体感觉权重。

结果 训练前,两种平面下,静态VR下COP平均移动速度均明显高于睁眼站立(|t| > 2.811, P < 0.01),明显低于闭眼站立(t > 3.279, P < 0.01);动态VR下COP平均移动速度均显著高于闭眼站立(|t| > 4.830, P < 0.001)。动态VR训练后,睁眼稳定平面下,COP平均移动速度增加(t = 2.305, P < 0.05);闭眼两种平面下,COP平均移动速度明显下降(t > 3.405, P < 0.01);两种平面静态和动态VR下,COP平均移动速度均明显下降(|t| > 3.285, P < 0.01)。静态VR训练后,睁眼稳定平面下,COP平均移动速度增加(t = 2.224, P < 0.05);闭眼海绵垫平面下,COP平均移动速度下降(t = 2.223, P < 0.05);静态VR海绵垫下,COP平均移动速度明显下降(t = 3.466, P < 0.01);动态VR两种平面下,COP平均移动速度均下降(|t| > 2.380, P < 0.05)。训练后,受试者视觉权重显著下降(t > 4.132, P < 0.001);动态训练后,正常本体感觉下视觉权重明显小于静态训练后(t = 3.611, P < 0.01)。

结论 静态VR环境下,人体平衡稳定性较睁眼时下降,但优于闭眼时;动态VR环境下,人体平衡稳定性甚至比闭眼更低。VR平衡训练后,无干扰的平衡稳定性下降,但对抗干扰的平衡稳定性提高。可能因为人体降低了对视觉信息的依赖,加强了对前庭感觉的利用。这种效应以动态VR训练更明显。

关键词: 姿势控制, 平衡, 虚拟现实, 感觉权重

Abstract:

Objective To explore the impact of different types of virtual reality environments balance exercise on human balance and posture control.

Methods From March to April, 2022, 30 male students from Dalian University of Technology were recruited to accept VR balance training of dynamic background (dynamic VR training) and static background (static VR training), respectively, with an interval of one week. They were measured the average moving speed of the center of pressure of human body under eight conditions before and after training, namely open-eye floor standing, close-eye floor standing, static VR background floor standing, dynamic VR background floor standing, open-eye sponge pad standing, close-eye sponge pad standing, static VR background sponge pad standing, and dynamic VR background sponge pad standing. Meanwhile, the weight of human body sensation was calculated.

Results Before training, the average movement speed of center of pressure was higher under the static VR than under open-eye (|t| > 2.811, P < 0.01), and lower than under close-eye (t > 3.279, P < 0.01) on both planes; while it was higher under dynamic VR than under close-eye (|t| > 4.830, P < 0.001). After dynamic VR training, the average movement speed of center of pressure increased under open-eye stable floor standing (t = 2.305, P < 0.05), decreased under close-eye on both planes (t > 3.405, P < 0.01), and decreased under static and dynamic VR on both planes (|t| > 3.285, P < 0.01). After static VR training, the average movement speed of center of pressure increased under open-eye floor standing (t = 2.224, P < 0.05), decreased under close-eye sponge pad standing (t = 2.223, P < 0.05), and decreased under dynamic VR on both planes (|t| > 2.380, P < 0.05). The weight of vision decreased after training (t > 4.132, P < 0.001), and the visual weight under normal proprioception was less after dynamic VR training than after static VR training (t = 3.611, P < 0.01).

Conclusion Under static VR background, the balance stability is poorer than under open-eye, but stronger than under close-eye. Under dynamic VR background, the balance stability is poorer under close-eye. VR balance training may decrease the stability without interference, but improve the stability under interference, which may result from reducing the dependence on visual sensation and strengthening the use of vestibular sensation, especially after VR training with dynamic background.

Key words: posture control, balance, virtual reality, sensory weight

中图分类号: