| [1] | SLATER M, KHANNA P, MORTENSEN J, et al. Visual realism enhances realistic response in an immersive virtual environment[J]. IEEE Comput Graph App, 2009, 29(3): 76-84. | 
																													
																						| [2] | CHITTARO L, CORBETT C L, MCLEAN G A, et al. Safety knowledge transfer through mobile virtual reality: a study of aviation life preserver donning[J]. Safety Sci, 2018, 102: 159-168. doi: 10.1016/j.ssci.2017.10.012
 | 
																													
																						| [3] | GAVISH N, GUTIERREZ T, WEBEL S, et al. Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks[J]. Interact Learn Environ, 2015, 23(6): 778-798. doi: 10.1080/10494820.2013.815221
 | 
																													
																						| [4] | AÏM F, LONJON G, HANNOUCHE D, et al. Effectiveness of virtual reality training in orthopaedic surgery[J]. Arthroscopy, 2016, 32(1): 224-232. doi: 10.1016/j.arthro.2015.07.023
																																					pmid: 26412672
 | 
																													
																						| [5] | ALAKER M, WYNN G R, TAN A. Virtual reality training in laparoscopic surgery: a systematic review & meta-analysis[J]. Int J Surg, 2016, 29: 85-94. doi: 10.1016/j.ijsu.2016.03.034
 | 
																													
																						| [6] | 焦粤农, 林颖, 张欣睿, 等. 沉浸式虚拟现实系统辅助前庭功能康复的应用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(5): 68-72. | 
																													
																						|  | JIAO Y N, LIN Y, ZHANG X R, et al. Evaluation of the effectiveness of immersive virtual reality-based exercise system for vestibular rehabilitation[J]. J Clin Otolaryngol Head Neck Surg, 2020, 34(5): 68-72. | 
																													
																						| [7] | KIM Y S, PARK M C. Comparison of balance ability according to the immersion level of virtual reality-based training for the balance enhancement of the elderly[J]. PNF Mov, 2018, 16(2): 259-266. | 
																													
																						| [8] | RIZZO A A, SCHULTHEIS M, KERNS K A, et al. Analysis of assets for virtual reality applications in neuropsychology[J]. Neuropsychol Rehabil, 2004, 14(1-2): 207-239. doi: 10.1080/09602010343000183
 | 
																													
																						| [9] | 周柳, 王英华, 刘强, 等. 虚拟现实技术在运动康复中的应用[J]. 中国组织工程研究, 2007, 11(5): 957-960. | 
																													
																						|  | ZHOU L, WANG Y H, LIU Q, et al. Application of virtual reality in motor rehabilitation[J]. Res Tiss Eng Chin, 2007, 11(5): 957-960. | 
																													
																						| [10] | DA SILVA MARINHO A, TERTON U, JONES C M. Cybersickness and postural stability of first time VR users playing VR videogames[J]. Appl Ergon, 2022, 101: 103698. doi: 10.1016/j.apergo.2022.103698
 | 
																													
																						| [11] | RAUSCH M, SIMON J E, STARKEY C, et al. Smartphone virtual reality to increase clinical balance assessment responsiveness[J]. Phys Ther Sport, 2018, 32: 207-211. doi: S1466-853X(17)30688-0
																																					pmid: 29803943
 | 
																													
																						| [12] | REBÊLO F L, SILVA L, DONÁ F, et al. Immersive virtual reality is effective in the rehabilitation of older adults with balance disorders: a randomized clinical trial[J]. Exp Gerontol, 2021, 149(3): 111308. doi: 10.1016/j.exger.2021.111308
 | 
																													
																						| [13] | 余彬, 曾庆, 黄国志. 头戴式虚拟现实系统在运动康复治疗中的应用进展[J]. 中国康复医学杂志, 2018, 33(6): 734-737. | 
																													
																						| [14] | LUO H, WANG X, FAN M, et al. The effect of visual stimuli on stability and complexity of postural control[J]. Front Neurol, 2018, 9: 48. doi: 10.3389/fneur.2018.00048
																																					pmid: 29472888
 | 
																													
																						| [15] | CHANDER H, ARACHCHIGE S, HILL C M, et al. Virtual-reality-induced visual perturbations impact postural control system behavior[J]. Behav Sci (Basel), 2019, 9(11): 113. | 
																													
																						| [16] | PUJIARTATI D A, ANANTA M F, MUSLIM K, et al. Effect of virtual reality usage on postural stability[J]. J Phys, 2019, 1517(1): 012026. | 
																													
																						| [17] | 刘波, 孔维佳, 邹宇. 应用海绵垫干扰本体觉分析正常人姿势平衡中的感觉整合作用[J]. 临床耳鼻咽喉头颈外科杂志, 2007, 21(4): 162-165. | 
																													
																						|  | LIU B, KONG W J, ZOU Y, et al. The sensory organization in the posture stability with interruption induced by standing foam in normal subjects[J]. J Clin Otolaryngol Head Neck Surg, 2007, 21(4): 162-165. | 
																													
																						| [18] | VITKOVIC J, LE C, LEE S L, et al. The contribution of hearing and hearing loss to balance control[J]. Audiol Neurotol, 2016, 21(4): 195-202. doi: 10.1159/000445100
 | 
																													
																						| [19] | MAHEU M, SHARP A, LANDRY S P, et al. Sensory reweighting after loss of auditory cues in healthy adults[J]. Gait Posture, 2017, 53: 151-154. doi: S0966-6362(17)30024-3
																																					pmid: 28157577
 | 
																													
																						| [20] | EL-KAHKY A M. Balance control near the limit of stability in various sensory conditions in healthy subjects and patients suffering from vertigo or balance disorders: impact of sensory input on balance control[J]. Acta Oto-Laryngol, 2000, 120(4): 508-516. doi: 10.1080/000164800750046018
 | 
																													
																						| [21] | ALLUM J H, PFALTZ C R. Visual and vestibular contributions to pitch sway stabilization in the ankle muscles of normals and patients with bilateral peripheral vestibular deficits[J]. Exp Brain Res, 1985, 58(1): 82-94. doi: 10.1007/BF00238956
																																					pmid: 3872806
 | 
																													
																						| [22] | DUCLOS N C, MAYNARD L, ABBAS D, et al. Hemispheric specificity for proprioception: postural control of standing following right or left hemisphere damage during ankle tendon vibration[J]. Brain Res, 2015, 1625: 159-170. doi: 10.1016/j.brainres.2015.08.043
																																					pmid: 26358149
 | 
																													
																						| [23] | MOREL M, BIDEAU B, LARDY J, et al. Advantages and limitations of virtual reality for balance assessment and rehabilitation[J]. Neurophysiol Clin, 2015, 45(4/5): 315-326. doi: 10.1016/j.neucli.2015.09.007
 | 
																													
																						| [24] | ROBERT M T, BALLAZ L, LEMAY M. The effect of viewing a virtual environment through a head-mounted display on balance[J]. Gait Posture, 2016, 48: 261-266. doi: S0966-6362(16)30089-3
																																					pmid: 27344394
 | 
																													
																						| [25] | HORLINGS C, CARPENTER M G, KÜNG U M, et al. Influence of virtual reality on postural stability during movements of quiet stance[J]. Neurosci Lett, 2009, 451(3): 227-231. doi: 10.1016/j.neulet.2008.12.057
																																					pmid: 19146921
 | 
																													
																						| [26] | WALLARD L, BRIL B, DIETRICH G, et al. The role of head stabilization in locomotion in children with cerebral palsy[J]. Ann Phys Rehabil Med, 2012, 55(9-10): 590-600. doi: 10.1016/j.rehab.2012.10.004
																																					pmid: 23165246
 | 
																													
																						| [27] | IMAIZUMI L, POLASTRI P F, PENEDO T, et al. Virtual reality head-mounted goggles increase the body sway of young adults during standing posture[J]. Neurosci Lett, 2020, 737: 135333. doi: 10.1016/j.neulet.2020.135333
 | 
																													
																						| [28] | ALBERTS B, SELEN L, MEDENDORP W P. Age-related reweighting of visual and vestibular cues for vertical perception[J]. J Neurophysiol, 2019, 121(4): 1279-1288. doi: 10.1152/jn.00481.2018
																																					pmid: 30699005
 | 
																													
																						| [29] | KENNEDY R S, STANNEY K M, DUNLAP W P. Duration and exposure to virtual environments: sickness curves during and across sessions[J]. Teleoperat Virtual Environ, 2000, 9(5): 463-472. | 
																													
																						| [30] | RISI D, PALMISANO S. Effects of postural stability, active control, exposure duration and repeated exposures on HMD induced cybersickness[J]. Displays, 2019, 60: 9-17. doi: 10.1016/j.displa.2019.08.003
 | 
																													
																						| [31] | TOSSAVAINEN T, JUHOLA M, PYYKKOE I, et al. Development of virtual reality stimuli for force platform posturography[J]. Int J Med Inform, 2003, 70(2-3): 277-283. pmid: 12909179
 | 
																													
																						| [32] | AKIZUKI H, UNO A, ARAI K, et al. Effects of immersion in virtual reality on postural control[J]. Neurosci Lett, 2005, 379(1): 23-26. pmid: 15814192
 | 
																													
																						| [33] | SCHUT I M, ENGELHART D, PASMA J H, et al. Compliant support surfaces affect sensory reweighting during balance control[J]. Gait Posture, 2017, 53: 241-247. doi: S0966-6362(17)30038-3
																																					pmid: 28231556
 | 
																													
																						| [34] | ASSLÄNDER L, PETERKA R J. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues[J]. J Neurophysiol, 2016, 116(2): 272. doi: 10.1152/jn.01145.2015
																																					pmid: 27075544
 | 
																													
																						| [35] | CHANG E, SEO D, KIM H T, et al. An integrated model of cybersickness: understanding user's discomfort in virtual reality[J]. J KIISE, 2018, 45(3): 251-279. doi: 10.5626/JOK.2018.45.3.251
 |