《中国康复理论与实践》 ›› 2024, Vol. 30 ›› Issue (6): 693-700.doi: 10.3969/j.issn.1006-9771.2024.06.009

• 循证研究 • 上一篇    下一篇

近10年脑电图应用于孤独症谱系障碍领域研究的文献计量分析

张哲1,2,3, 董献文1,2(), 徐成铭1,2, 胡文静1,2,3, 贺婷丽1,2,3, 崔鑫鑫1,2,3, 徐红艳1,2,3, 周章盈1,2,3, 韩雅男1   

  1. 1.郑州大学第五附属医院,河南郑州市 450052
    2.河南省康复医学重点实验室,河南郑州市 450052
    3.郑州大学医学科学院,河南郑州市 450052
  • 收稿日期:2024-01-11 出版日期:2024-06-25 发布日期:2024-07-03
  • 通讯作者: 董献文(1980-),男,汉族,博士,讲师,硕士研究生导师,主要研究方向:脑功能康复,E-mail: xianwen.2004@163.com。
  • 作者简介:张哲(2001-),男,汉族,安徽淮南市人,硕士研究生,主要研究方向:孤独症的康复治疗。
  • 基金资助:
    河南省卫健委省部共建重点项目(SBGJ202002123);河南省高等学校重点科研项目(21A320058)

Electroencephalography applied in autism spectrum disorder research in decade: a bibliometrics analysis

ZHANG Zhe1,2,3, DONG Xianwen1,2(), XU Chengming1,2, HU Wenjing1,2,3, HE Tingli1,2,3, CUI Xinxin1,2,3, XU Hongyan1,2,3, ZHOU Zhangying1,2,3, HAN Ya'nan1   

  1. 1. The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
    2. Key Laboratory of Rehabilitation Medicine, Zhengzhou, Henan 450052, China
    3. School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
  • Received:2024-01-11 Published:2024-06-25 Online:2024-07-03
  • Supported by:
    Key Project of Henan Provincial Health Commission(SBGJ202002123);Key Research Project of Higher Education Institutions in Henan Province(21A320058)

摘要:

目的 分析脑电图应用于孤独症谱系障碍(ASD)领域的研究现状、研究热点和发展趋势。

方法 检索2014年1月至2024年1月Web of Science核心合集相关文献,采用CiteSpace 6.2.R4进行可视化分析。

结果 最终纳入文献1 509篇,发文量呈逐年上升趋势。发文量和节点中心性最高的国家为美国。该领域发文期刊主要集中于临床医学、免疫学、心理学等学科。关键词共现和聚类结果表明,研究主要聚焦于ASD核心症状与脑电图指标的相关性研究、ASD及其共患病的鉴别诊断、脑功能连接以及康复疗效的评估。近3年突现的关键词主要为人工智能和机器学习。

结论 脑电图应用于ASD领域的研究热度呈上升趋势,未来可以重点关注利用脑电图联合多模态神经成像及机器学习技术探索ASD脑网络机制。

关键词: 孤独症谱系障碍, 脑电图, 文献计量学

Abstract:

Objective To analyze the current state, research hotspots, and development trends of electroencephalography (EEG) applied in the field of autism spectrum disorder (ASD).

Methods Relevant literature from the Web of Science core collection database from January, 2014 to January, 2024 were retrieved and analyzed using CiteSpace 6.2.R4.

Results A total of 1 509 articles were included, with an increasing trend in publication volume over the years. The United States ranked highest in both publication volume and node centrality. The primary journals in this field were concentrated in clinical medicine, immunology and psychology. Keyword co-occurrence and clustering indicated that research primarily focused on the correlation between core symptoms of ASD and EEG indicators, differential diagnosis of ASD and its comorbidities, brain functional connectivity, and assessment of rehabilitation efficacy. Keywords bursted in the past three years mainly included artificial intelligence and machine learning.

Conclusion The researches in EEG technology in the field of ASD is generally increasing. Future researches may focus on exploring the brain network mechanisms of ASD using EEG combined with multimodal neuroimaging, and machine learning technologies.

Key words: autism spectrum disorder, electroencephalography, bibliometrics

中图分类号: