《中国康复理论与实践》 ›› 2024, Vol. 30 ›› Issue (11): 1322-1333.doi: 10.3969/j.issn.1006-9771.2024.11.010
杜华勇1,2, 李泽辉1,2, 王晓昕1,2, 荆瀛黎3, 高峰1,2, 杨德刚1,2, 李建军1,2,3()
收稿日期:
2024-06-26
修回日期:
2024-10-12
出版日期:
2024-11-25
发布日期:
2024-12-05
通讯作者:
李建军(1962-),男,汉族,山东人,教授、主任医师,博士研究生/博士后导师,主要研究方向:骨科、脊柱脊髓外科和脊髓损伤的治疗与康复。E-mail:作者简介:
杜华勇(1999-),男,汉族,贵州铜仁市人,硕士研究生,主要研究方向:脊髓损伤相关的康复。
基金资助:
DU Huayong1,2, LI Zehui1,2, WANG Xiaoxin1,2, JING Yingli3, GAO Feng1,2, YANG Degang1,2, LI Jianjun1,2,3()
Received:
2024-06-26
Revised:
2024-10-12
Published:
2024-11-25
Online:
2024-12-05
Contact:
LI Jianjun, E-mail: Supported by:
摘要:
目的 分析脊髓损伤后微环境中免疫反应领域的研究现状、热点和发展趋势。
方法 在中国知网和Web of Science核心合集,检索自建库起至2024年3月期间脊髓损伤后微环境中免疫反应相关研究的文献,采用VOSviewer和CiteSpace对纳入文献的作者、国家、机构、期刊、共被引文献和关键词进行可视化分析并绘制知识图谱。
结果 共纳入152篇中文文献和455篇英文文献。中、英文发文量逐年增加,中国和美国是该领域的主要研究国家。中文文献中,朱悦是高产作者,中国医科大学是高产机构。英文文献中,Phillip Popovich是高产且高被引作者,俄亥俄州立大学是高产机构。Journal of Neuroscience和Experimental Neurology是重要期刊。中英文研究热点集中在免疫激活、炎症反应和功能恢复等,干细胞移植、巨噬细胞和中医药等在脊髓损伤后免疫反应调控中的研究占比较大。
结论 微环境中的免疫反应已经成为脊髓损伤领域关注的焦点,研究重点正从免疫机制转向免疫调控策略的探索,一些前沿技术在这方面展现出巨大潜力。未来需加强跨地域、跨机构合作,促进信息共享,加速研究进展和临床转化,以提升患者康复效果。
中图分类号:
杜华勇, 李泽辉, 王晓昕, 荆瀛黎, 高峰, 杨德刚, 李建军. 脊髓损伤后微环境中免疫反应的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(11): 1322-1333.
DU Huayong, LI Zehui, WANG Xiaoxin, JING Yingli, GAO Feng, YANG Degang, LI Jianjun. Immune responses in the microenvironment after spinal cord injury: a bibliometric analysis[J]. Chinese Journal of Rehabilitation Theory and Practice, 2024, 30(11): 1322-1333.
表4
英文关键词聚类分析表"
标签 | 节点数 | 轮廓值 | 年份 | 规模 |
---|---|---|---|---|
#0 | 24 | 0.898 | 2005 | spinal cord injury; immune activation; axon |
#1 | 15 | 0.869 | 2015 | leukocytes; adaptive immunity; immune response; neurogenesis; spinal cord injury |
#2 | 15 | 0.901 | 2009 | innate immune response; adaptive immune response; stem cells; spinal cord injury |
#3 | 14 | 0.913 | 2012 | dendritic cells; bone marrow; antigen presenting cells; |
#4 | 14 | 0.935 | 2006 | monocytes; minocycline; spinal cord injury; functional recovery |
#5 | 13 | 0.833 | 2016 | neuropathic pain; immune cells; major histocompatibility complex class; bioactive lipids |
#6 | 11 | 0.946 | 2005 | hypothalamic-pituitary-adrenal axis; cyclooxygenase-2; TANK-binding kinase 1; NF-κB |
#7 | 10 | 0.932 | 2016 | angiogenesis; autophagy; CXC chemokine receptor 4; lymphangiogenesis |
[1] | 李建军, 王方永. 脊髓损伤神经学分类国际标准(2011年修订)[J]. 中国康复理论与实践, 2011, 17(10): 963-972. |
LI J J, WANG F Y. International Standards for Neurological Classification of Spinal Cord Injury[J]. Chin J Rehabil Theory Pract, 2011, 17(10): 963-972. | |
[2] |
DING W, HU S, WANG P, et al. Spinal cord injury: the global incidence, prevalence, and disability from the global burden of disease study 2019[J]. Spine, 2022, 47(21): 1532-1540.
doi: 10.1097/BRS.0000000000004417 pmid: 35857624 |
[3] |
JAMES S L, THEADOM A, ELLENBOGEN R G, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(1): 56-87.
doi: S1474-4422(18)30415-0 pmid: 30497965 |
[4] |
FAN B, WEI Z, YAO X, et al. Microenvironment imbalance of spinal cord injury[J]. Cell Transplant, 2018, 27(6): 853-866.
doi: 10.1177/0963689718755778 pmid: 29871522 |
[5] | TANG H, GU Y, JIANG L, et al. The role of immune cells and associated immunological factors in the immune response to spinal cord injury[J]. Front Immunol, 2023, 13: 1070540. |
[6] | JIN Y, SONG Y, LIN J, et al. Role of inflammation in neurological damage and regeneration following spinal cord injury and its therapeutic implications[J]. Burns Trauma, 2023, 11: tkac054. |
[7] | DE OLIVEIRA O J, DA SILVA F F, JULIANI F, et al. Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: an essential instrument to support the development of scientific projects[M]. London: IntechOpen, 2019. |
[8] | PRICE D J D S. Little science, big science[M]. New York: Columbia University Press, 1963. |
[9] | SCHIRRMACHER V. Bone marrow: the central immune system[J]. Immuno, 2023, 3(3): 289-329. |
[10] | STERNER R C, STERNER R M. Immune response following traumatic spinal cord injury: pathophysiology and therapies[J]. Front Immunol, 2023, 13: 1084101. |
[11] |
CRUSE J M, KEITH J C, BRYANT M L JR, et al. Immune system-neuroendocrine dysregulation in spinal cord injury[J]. Immunol Res, 1996, 15(4): 306-314.
doi: 10.1007/BF02935314 pmid: 8988397 |
[12] | CRUSE J M, LEWIS R E J R, BISHOP G R, et al. Decreased immune reactivity and neuroendocrine alterations related to chronic stress in spinal cord injury and stroke patients[J]. Pathobiology, 1993, 61(3/4): 183-192. |
[13] |
HAUBEN E, BUTOVSKY O, NEVO U, et al. Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion[J]. J Neurosci, 2000, 20(17): 6421-6430.
pmid: 10964948 |
[14] | IBARRA A, CORREA D, WILLMS K, et al. Effects of cyclosporin: a on immune response, tissue protection and motor function of rats subjected to spinal cord injury[J]. Brain Res, 2003, 979(1/2): 165-178. |
[15] |
SCHWARTZ M. Immunological approaches to the treatment of spinal cord injury[J]. BioDrugs, 2001, 15(9): 585-593.
pmid: 11580302 |
[16] |
HAMADA Y, IKATA T, KATOH S, et al. Involvement of an intercellular adhesion molecule 1-dependent pathway in the pathogenesis of secondary changes after spinal cord injury in rats[J]. J Neurochem, 1996, 66(4): 1525-1531.
pmid: 8627308 |
[17] | PEARSE D D, BUNGE M B. Designing cell- and gene-based regeneration strategies to repair the injured spinal cord[J]. J Neurotrauma, 2006, 23(3/4): 438-452. |
[18] | KIGERL K A, LAI W, RIVEST S, et al. Toll‐like receptor (TLR)‐2 and TLR‐4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury[J]. J Neurochem, 2007, 102(1): 37-50. |
[19] | JI W, HU S, ZHOU J, et al. Tissue engineering is a promising method for the repair of spinal cord injuries[J]. Exp Ther Med, 2014, 7(3): 523-528. |
[20] | TORRES ESPÍN A, REDONDO CASTRO E, HERNANDEZ J, et al. Immunosuppression of allogenic mesenchymal stem cells transplantation after spinal cord injury improves graft survival and beneficial outcomes[J]. J Neurotrauma, 2015, 32(6): 367-380. |
[21] | MORENO MANZANO V, RODRIGUEZ JIMENEZ F J, GARCIA ROSELLO M, et al. Activated spinal cord ependymal stem cells rescue neurological function[J]. Stem Cells, 2009, 27(3): 733-743. |
[22] |
ZHANG J, ZHANG A, SUN Y, et al. Treatment with immunosuppressants FTY720 and tacrolimus promotes functional recovery after spinal cord injury in rats[J]. Tohoku J Exp Med, 2009, 219(4): 295-302.
pmid: 19966528 |
[23] | FEHLINGS M G, NGUYEN D H. Immunoglobulin G: a potential treatment to attenuate neuroinflammation following spinal cord injury[J]. J Clin Immunol, 2010, 30(Suppl 1): S109-S112. |
[24] | ADHIKARY S, LI H, HELLER J, et al. Modulation of inflammatory responses by a cannabinoid-2-selective agonist after spinal cord injury[J]. J Neurotrauma, 2011, 28(12): 2417-2427. |
[25] |
SLAETS H, NELISSEN S, JANSSENS K, et al. Oncostatin M reduces lesion size and promotes functional recovery and neurite outgrowth after spinal cord injury[J]. Mol Neurobiol, 2014, 50(3): 1142-1151.
doi: 10.1007/s12035-014-8795-5 pmid: 24996996 |
[26] | LIU W Z, MA Z J, LI J R, et al. Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury[J]. Stem Cell Res, 2021, 12(1): 1-15. |
[27] | LI C J, QIN T, LIU Y D, et al. Microglia-derived exosomal microRNA-151-3p enhances functional healing after spinal cord injury by attenuating neuronal apoptosis regulating the p53/p21/CDK1 signaling pathway[J]. Front Cell Dev Biol, 2022, 9: 783017. |
[28] | TUKMACHEV D, FOROSTYAK S, KOCI Z, et al. Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair[J]. Tissue Eng Part A, 2016, 22(3/4): 306-317. |
[29] |
KONG X Y, GAO J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury[J]. J Cell Mol Med, 2017, 21(5): 941-953.
doi: 10.1111/jcmm.13034 pmid: 27957787 |
[30] | HUANG Y, WU Q, TAM P K H. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications[J]. Int J Mol Sci, 2022, 23(17): 10023. |
[31] | ACEVEDO O A, BERRIOS R V, RODRÍGUEZ-GUILARTE L, et al. Molecular and cellular mechanisms modulating trained immunity by various cell types in response to pathogen encounter[J]. Front Immunol, 2021, 12: 745332. |
[32] | BONOSI L, SILVEN M P, BIANCARDINO A A, et al. Stem cell strategies in promoting neuronal regeneration after spinal cord injury: a systematic review[J]. Int J Mol Sci, 2022, 23(21): 12996. |
[33] |
FENG Y, LI Y, SHEN P P, et al. Gene-modified stem cells for spinal cord injury: a promising better alternative therapy[J]. Stem Cell Rev Rep, 2022, 18(8): 2662-2682.
doi: 10.1007/s12015-022-10387-z pmid: 35587330 |
[34] | RIBEIRO B F, DA CRUZ B C, DE SOUSA B M, et al. Cell therapies for spinal cord injury: a review of the clinical trials and cell-type therapeutic potential[J]. Brain, 2023, 146(7): 2672-2693. |
[35] | DAMIANAKIS E I, BENETOS I S, EVANGELOPOULOS D S, et al. Stem cell therapy for spinal cord injury: a review of recent clinical trials[J]. Cureus, 2022, 14(4): e24575. |
[36] | 魏延冕, 周玫彤. 脊髓损伤的中医现代化治疗研究进展[J]. 中国当代医药, 2024, 31(13): 175-179. |
WEI Y M, ZHOU M T. Research progress on modernized treatment of spinal cord injury in traditional Chinese medicine[J]. Chin Modern Med, 2024, 31(13): 175-179. | |
[37] |
LIU S, WANG Z F, SU Y S, et al. Somatotopic organization and intensity dependence in driving distinct NPY-expressing sympathetic pathways by electroacupuncture[J]. Neuron, 2020, 108(3): 436-450.e7.
doi: 10.1016/j.neuron.2020.07.015 pmid: 32791039 |
[38] | ZHENG Y, QI S, WU F, et al. Chinese herbal medicine in treatment of spinal cord injury: a systematic review and meta-analysis of randomized controlled trials[J]. Am J Chin Med, 2020, 48(7): 1593-1616. |
[39] | 徐振华, 李彦杰, 秦合伟, 等. 中药单体治疗脊髓损伤后神经炎症:核转录因子κB信号通路的作用[J]. 中国组织工程研究, 2025, 29(3): 590-598. |
XU Z H, LI Y J, QIN H W, et al. Traditional Chinese medicine monomer in treatment of neuroinflammation after spinal cord injury: effects of nuclear transcription factor kappa B signaling pathway[J]. Chin J Tissue Eng Res, 2025, 29(3): 590-598. | |
[40] | 彭毛, 东智. 巨噬细胞极化调控炎症反应的研究进展[J]. 临床医学进展, 2022, 12: 6796. |
PENG M, DONG Z. Research progress in the regulation of inflammatory response by macrophage polarization[J]. Adv Clin Med, 2022, 12: 6796. | |
[41] | GUO X, JIANG C, CHEN Z, et al. Regulation of the JAK/STAT signaling pathway in spinal cord injury: an updated review[J]. Front Immunol, 2023, 14: 1276445. |
[42] | ELMALKY M I, ALVAREZ BOLADO G, YOUNSI A, et al. Axonal regeneration after spinal cord injury: molecular mechanisms, regulatory pathways, and novel strategies[J]. Biology, 2024, 13(9): 703. |
[43] | KHAN S I, AHMED N, AHSAN K, et al. An insight into the prospects and drawbacks of stem cell therapy for spinal cord injuries: ongoing trials and future directions[J]. Brain Sci, 2023, 13(12): 1697. |
[44] | 何宛俞, 程乐平. 干细胞移植修复脊髓损伤的策略与进展[J]. 中国组织工程研究, 2024, 28(19): 3090-3096. |
[1] | 张璐, 马江平, 杨二丽, 陈秋华, 董丽军, 尹小兵. 认知-运动双重任务训练应用于脑卒中的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(9): 1034-1042. |
[2] | 何鋆怡, 王海芳, 陈健, 孔乔, 徐敏杰, 常静玲. 基于语言任务的任务态功能磁共振成像在神经精神疾病领域应用的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(8): 930-938. |
[3] | 陈梦缘, 王秋琴, 徐语晨, 刘洁, 张馨悦, 陈菊萍, 徐桂华. 帕金森病疼痛相关研究的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(7): 797-803. |
[4] | 叶睿雪, 王玉龙, 高焱, 薛凯文, 张泽宇, 闫杰, 邹瑜聪, 但果. 中国多层次康复服务体系文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 630-638. |
[5] | 胥琪玲, 姜晓煜, 毕鸿雁. 近10年非侵入性脑刺激治疗帕金森病的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 665-674. |
[6] | 杨彬, 刘明月, 高丹, 李哲. 经颅直流电刺激在脑卒中康复中应用的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 675-685. |
[7] | 李艳丽, 刘兰群, 徐基民, 王海芳. 脑卒中后足下垂相关研究的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 686-692. |
[8] | 张哲, 董献文, 徐成铭, 胡文静, 贺婷丽, 崔鑫鑫, 徐红艳, 周章盈, 韩雅男. 近10年脑电图应用于孤独症谱系障碍领域研究的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(6): 693-700. |
[9] | 袁媛, 周红俊, 卫波, 丛欣莹, 刘根林, 郑樱, 郝春霞, 张缨, 王一吉, 康海琼, 逯晓蕾, 蒙倩茹. 创伤性颈脊髓损伤患者华勒氏变性的磁共振成像研究[J]. 《中国康复理论与实践》, 2024, 30(4): 487-492. |
[10] | 黄龙贤, 左燕, 陈丽梅, 顾思佳, 蒋金梅, 张志伟. 近20年吞咽障碍患者误吸研究动态的可视化分析[J]. 《中国康复理论与实践》, 2024, 30(3): 292-302. |
[11] | 魏凤芹, 陆敏, 陈勇, 杨琼, 肖露, 刘茂竹. 2004年至2023年国际言语失用症领域研究进展的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(11): 1291-1298. |
[12] | 徐芳园, 胡培佳, 叶宇, 戴帆, 程红亮. 1994年至2023年针灸干预脑卒中后吞咽障碍的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(11): 1299-1310. |
[13] | 郝英姿, 支亮, 李雅薇, 洪雅晴, 柯美华, 王娟, 王玉龙. 2014年至2024年脑卒中后肺部感染领域的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(11): 1311-1321. |
[14] | 李璇, 窦鹏, 王炫超, 江海媚, 饶静怡, 钱淑萍, 王楚怀, 许轶. 儿童青少年脊柱弯曲异常疾病运动干预的文献计量分析[J]. 《中国康复理论与实践》, 2024, 30(10): 1140-1150. |
[15] | 高明明, 恽晓萍, 赵舒羽, 辛然, 宋桂芸, 赵阳. 踝关节智能牵伸对脊髓损伤患者下肢痉挛效果的随机对照试验[J]. 《中国康复理论与实践》, 2024, 30(10): 1187-1192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|