[1] |
SPRUNG J, ROBERTS R O, WEINGARTEN T N, et al. Postoperative delirium in elderly patients is associated with subsequent cognitive impairment[J]. Br J Anaesth, 2017, 119(2): 316-323.
doi: 10.1093/bja/aex130
pmid: 28854531
|
[2] |
STEPHAN B C M, COCHRANE L, KAFADAR A H, et al. Population attributable fractions of modifiable risk factors for dementia: a systematic review and meta-analysis[J]. Lancet Healthy Longev, 2024, 5(6): e406-e421.
|
[3] |
LEHMANN S, SCHRAEN-MASCHKE S, VIDAL J S, et al. Plasma phosphorylated tau 181 predicts amyloid status and conversion to dementia stage dependent on renal function[J]. J Neurol Neurosurg Psychiatry, 2023, 94(6): 411-419.
doi: 10.1136/jnnp-2022-330540
pmid: 37012068
|
[4] |
LEDUC V, DE BEAUMONT L, THÉROUX L, et al. HMGCR is a genetic modifier for risk, age of onset and MCI conversion to Alzheimer's disease in a three cohorts study[J]. Mol Psychiatry, 2015, 20(7): 867-873.
|
[5] |
YIN C, IMMS P, CHENG M, et al. Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment[J]. Proc Natl Acad Sci U S A, 2023, 120(2): e2214634120.
|
[6] |
HUCKANS M, HUTSON L, TWAMLEY E, et al. Efficacy of cognitive rehabilitation therapies for mild cognitive impairment (MCI) in older adults: working toward a theoretical model and evidence-based interventions[J]. Neuropsychol Rev, 2013, 23(1): 63-80.
doi: 10.1007/s11065-013-9230-9
pmid: 23471631
|
[7] |
METZLER-BADDELEY C, HUNT S, JONES D K, et al. Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment[J]. Neurology, 2012, 79(23): 2233-2240.
|
[8] |
LIU Z, ZHANG L, BAI L, et al. Repetitive transcranial magnetic stimulation and Tai Chi Chuan for older adults with sleep disorders and mild cognitive impairment: a randomized clinical trial[J]. JAMA Netw Open, 2025, 8(1): e2454307.
|
[9] |
MASSOUD F, BELLEVILLE S, BERGMAN H, et al. Mild cognitive impairment and cognitive impairment, no dementia: Part B, therapy[J]. Alzheimers Dement, 2007, 3(4): 283-291.
doi: 10.1016/j.jalz.2007.07.002
pmid: 19595949
|
[10] |
COGNÉ É, POSTUMA R B, CHASLES M J, et al. Montreal Cognitive Assessment and the Clock Drawing Test to identify MCI and predict dementia in isolated REM sleep behavior disorder[J]. Neurology, 2024, 102(4): e208020.
|
[11] |
ZHANG L, WANG L, GAO J, et al. Deep fusion of brain structure-function in mild cognitive impairment[J]. Med Image Anal, 2021, 72: 102082.
|
[12] |
GROOT C, SMITH R, COLLIJ L E, et al. Tau positron emission tomography for predicting dementia in individuals with mild cognitive impairment[J]. JAMA Neurol, 2024, 81(8): 845-856.
doi: 10.1001/jamaneurol.2024.1612
pmid: 38857029
|
[13] |
FRIZZELL T O, GLASHUTTER M, LIU C C, et al. Artificial intelligence in brain MRI analysis of Alzheimer's disease over the past 12 years: a systematic review[J]. Ageing Res Rev, 2022, 77: 101614.
|
[14] |
ZHU W, SUN L, HUANG J, et al. Dual attention multi-instance deep learning for Alzheimer's disease diagnosis with structural MRI[J]. IEEE Trans Med Imaging, 2021, 40(9): 2354-2366.
|
[15] |
JO T, KIM J, BICE P, et al. Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease: application to metabolome data[J]. EBioMedicine, 2023, 97: 104820.
|
[16] |
HWANG D, KIM K Y, KANG S K, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning[J]. J Nucl Med, 2018, 59(10): 1624-1629.
|
[17] |
LIAN C, LIU M, ZHANG J, et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer's disease diagnosis using structural MRI[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(4): 880-893.
|
[18] |
TRICCO A C, LILLIE E, ZARIN W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation[J]. Ann Intern Med, 2018, 169(7): 467-473.
doi: 10.7326/M18-0850
pmid: 30178033
|
[19] |
周英风, 顾莺, 胡雁, 等. JBI循证卫生保健中心对关于不同类型研究的质量评价工具:患病率及分析性横断面研究的质量评价[J]. 护士进修杂志, 2018, 33(3): 219-221.
|
|
ZHOU Y F, GU Y, HU Y, et al. The Joanna Briggs Institute critical appraisal tools for use in systematic review: prevalence study and analytical cross sectional study[J]. J Nurs Train, 2018, 33(3): 219-221.
|
[20] |
CIARMIELLO A, GIOVANNINI E, PASTORINO S, et al. Machine learning model to predict diagnosis of mild cognitive impairment by using radiomic and amyloid brain PET[J]. Clin Nucl Med, 2023, 48(1): 1-7.
|
[21] |
POURRAMEZAN FARD A, MAHOOR M H, ALSUHAIBANI M, et al. Linguistic-based mild cognitive impairment detection using informative loss[J]. Comput Biol Med, 2024, 176: 108606.
|
[22] |
KHATRI U, KWON G R. Diagnosis of Alzheimer's disease via optimized lightweight convolution-attention and structural MRI[J]. Comput Biol Med, 2024, 171: 108116.
|
[23] |
SUK H I, LEE S W, SHEN D. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis[J]. NeuroImage, 2014, 101: 569-582.
|
[24] |
YOON D, MYONG Y, KIM Y G, et al. Latent diffusion model-based MRI superresolution enhances mild cognitive impairment prognostication and Alzheimer's disease classification[J]. NeuroImage, 2024, 296: 120663.
|
[25] |
KIM J, LEE B. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine[J]. Hum Brain Mapp, 2018, 39(9): 3728-3741.
doi: 10.1002/hbm.24207
pmid: 29736986
|
[26] |
SUK H I, WEE C Y, LEE S W, et al. State-space model with deep learning for functional dynamics estimation in resting-state fMRI[J]. NeuroImage, 2016, 129: 292-307.
|
[27] |
LIU M, LI F, YAN H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease[J]. NeuroImage, 2020, 208: 116459.
|
[28] |
RASHID A H, GUPTA A, GUPTA J, et al. Biceph-Net: a robust and lightweight framework for the diagnosis of Alzheimer's disease using 2D-MRI scans and deep similarity learning[J]. IEEE J Biomed Health Inform, 2023, 27(3): 1205-1213.
|
[29] |
LEE J, KO W, KANG E, et al. A unified framework for personalized regions selection and functional relation modeling for early MCI identification[J]. NeuroImage, 2021, 236: 118048.
|
[30] |
ETMINANI K, SOLIMAN A, DAVIDSSON A, et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET[J]. Eur J Nucl Med Mol Imaging, 2022, 49(2): 563-584.
|
[31] |
KAM T E, ZHANG H, JIAO Z, et al. Deep learning of static and dynamic brain functional networks for early MCI detection[J]. IEEE Trans Med Imaging, 2020, 39(2): 478-487.
|
[32] |
ZHOU T, THUNG K, ZHU X, et al. Effective feature learning and fusion of multimodality data using stage‐wise deep neural network for dementia diagnosis[J]. Hum Brain Mapp, 2018, 40(3): 1001-1016.
|
[33] |
GU D, LV X, SHI C, et al. A stable and scalable digital composite neurocognitive test for early dementia screening based on machine learning: model development and validation study[J]. J Med Internet Res, 2023, 25: e49147.
|
[34] |
GHORAANI B, BOETTCHER L N, HSSAYENI M D, et al. Detection of mild cognitive impairment and Alzheimer's disease using Dual-task Gait Assessments and machine learning[J]. Biomed Signal Process Control, 2021, 64: 102249.
|
[35] |
YUAN C, LINN K A, HUBBARD R A. Algorithmic fairness of machine learning models for Alzheimer disease progression[J]. JAMA Netw Open, 2023, 6(11): e2342203.
|
[36] |
OSMAN Y B M, LI C, HUANG W, et al. Sparse annotation learning for dense volumetric MR image segmentation with uncertainty estimation[J]. Phys Med Biol, 2023, 69(1).
|
[37] |
WEN J, THIBEAU-SUTRE E, DIAZ-MELO M, et al. Convolutional neural networks for classification of Alzheimer's disease: overview and reproducible evaluation[J]. Med Image Anal, 2020, 63: 101694.
|
[38] |
SUK H I, LEE S W, SHEN D, et al. Deep ensemble learning of sparse regression models for brain disease diagnosis[J]. Med Image Anal, 2017, 37: 101-113.
|
[39] |
LIANG G, XING X, LIU L, et al. Alzheimer's disease classification using 2D convolutional neural networks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3008-3012.
doi: 10.1109/EMBC46164.2021.9629587
pmid: 34891877
|