《中国康复理论与实践》 ›› 2025, Vol. 31 ›› Issue (11): 1290-1302.doi: 10.3969/j.issn.1006-9771.2025.11.006
收稿日期:2025-08-14
修回日期:2025-09-12
出版日期:2025-11-25
发布日期:2025-11-26
通讯作者:
马丽虹
E-mail:Lhma2002@163.com
作者简介:张浩(2001-),男,汉族,山东济南市人,硕士研究生,主要研究方向:作业治疗研究、康复基础理论研究。
基金资助:
ZHANG Hao1, XU Chuanlei2, WEI Zhenxing3, MA Lihong1(
)
Received:2025-08-14
Revised:2025-09-12
Published:2025-11-25
Online:2025-11-26
Contact:
MA Lihong
E-mail:Lhma2002@163.com
Supported by:摘要:
目的 通过网状Meta分析(NMA)系统性地比较不同虚拟现实(VR)技术对帕金森病患者运动功能障碍的疗效。
方法 遵循PRISMA-NMA指南,系统检索PubMed、Embase、Cochrane Library、Web of Science、中国知网、万方数据库和维普,纳入比较至少两种干预措施对帕金森病患者运动功能影响的随机对照试验(RCT)。干预措施包括沉浸式虚拟现实(IVR)、非沉浸式虚拟现实(VRT)、增强现实(AR)、常规疗法(TAU)和主动控制(AC)。主要结局指标包括帕金森病统一评分量表第三部分(UPDRS-Ⅲ)、Berg平衡量表(BBS)和计时起立行走测试(TUGT)。采用基于频率学派的随机效应模型进行NMA,并采用累积排序概率曲线下面积(SUCRA)对干预措施进行疗效排序。
结果 共纳入20项RCT,涉及890例患者。IVR在改善UPDRS-Ⅲ评分方面表现最优(SUCRA = 97.7%),且优于TAU (SMD = -0.82, 95%CI -1.28~-0.37);IVR成为BBS评分最优选择的概率最高(SUCRA = 85.2%),优于TAU (SMD = 3.94, 95%CI 1.08~6.80)。IVR在TUGT结局方面表现最佳(SUCRA = 95.1%),优于VRT (SMD = 1.06, 95%CI 0.40~1.72)、AR (SMD = -1.09, 95%CI -1.98~-0.19)和TAU (SMD = -1.38, 95%CI -1.95~-0.82)。亚组分析显示,IVR的疗效优势主要在短期(4~6周)干预中得到证实,而长期疗效的证据目前十分有限。
结论 在针对帕金森病患者运动功能的康复治疗中,干预措施的疗效似乎与技术的“沉浸度”正相关。IVR作为沉浸度最高的技术,是改善帕金森病患者整体运动功能、平衡能力和移动能力的最优选择。VRT和AR作为有效的辅助手段,优于TAU。
中图分类号:
张浩, 许传蕾, 魏振兴, 马丽虹. 不同虚拟现实技术对帕金森病患者运动功能疗效的网状Meta分析[J]. 《中国康复理论与实践》, 2025, 31(11): 1290-1302.
ZHANG Hao, XU Chuanlei, WEI Zhenxing, MA Lihong. Comparison of different virtual reality technologies on motor function in Parkinson's disease: a network meta-analysis[J]. Chinese Journal of Rehabilitation Theory and Practice, 2025, 31(11): 1290-1302.
表2
纳入文献基本特征"
| 纳入文献 | 国家 | n(T/C) | 年龄(T/C)/岁 | 干预措施 | 对照 | 干预时间 | 结局指标 |
|---|---|---|---|---|---|---|---|
| 娄峰旗等[ | 中国 | 30/30 | (66.57±5.21)/(67.12±4.92) | IVR | TAU | 4周 | UPDRS-III、TUGT、BBS |
| 刘静等[ | 中国 | 21/21 | (62.14±7.21)/(61.86±7.53) | IVR | TAU | 4周 | UPDRS-III、TUGT、BBS |
| 陈思等[ | 中国 | 20/20 | (66.45±5.60)/(66.50±5.58) | IVR | TAU | 4周 | TUGT、BBS |
| 林志诚等[ | 中国 | 30/30 | (67.5±8.1)/(68.2±7.9) | VRT | TAU | 6周 | TUGT、BBS |
| 冯浩等[ | 中国 | 32/32 | (62.3±7.2)/(61.8±7.5) | VRT | TAU | 4周 | TUGT、BBS |
| Rosenfeldt等[ | 美国 | 25/22 | (70.0±6.44)/(68.1±5.94) | AR | TAU | 8周 | TUGT |
| Pazzaglia等[ | 意大利 | 25/26 | (72.0±7.0)/(70.0±10.0) | VRT | TAU | 6周 | BBS、DGI |
| Pompeu等[ | 巴西 | 16/16 | — | VRT | TAU | 7周 | BBS |
| Lee等[ | 韩国 | 10/10 | (68.4±2.9)/(70.1±3.3) | VRT | TAU | 6周 | BBS |
| Yuan等[ | 中国 | 12/12 | (67.8±5.5)/(66.5±8.8) | IVR | TAU | 6周 | BBS |
| Kashif等[ | 巴基斯坦 | 20/20 | (63.20±4.85)/(61.95±4.62) | VRT | TAU | 12周 | UPDRS-III、BBS |
| Goffredo等[ | 意大利 | 49/48 | (67.8±6.6)/(68.2±5.8) | VRT | TAU | 6周 | UPDRS-III |
| Santos等[ | 巴西 | 13/14 | (61.7±7.3)/(64.5±9.8) | VRT | TAU | 8周 | BBS;DGI、TUGT |
| Song等[ | 澳大利亚 | 28/25 | (68±7)/(65±7) | VRT | TAU | 12周 | TUGT |
| Yang等[ | 中国 | 11/12 | (72.5±8.4)/(75.4±6.3) | VRT | TAU | 6周 | UPDRS-III、BBS、TUGT |
| Gulcan等 [ | 土耳其 | 15/15 | — | AR | TAU | 6周 | UPDRS-III、BBS、TUGT |
| Mirelman等[ | 美国 | 20/20 | (64.9±8.4)/(68.2±6.9) | VRT | AC | 6周 | UPDRS-III、TUGT |
| Feng等[ | 中国 | 14/14 | (67.47±4.79)/(66.93±4.64) | VRT | TAU | 12周 | UPDRS-III、TUGT、BBS |
| Gandolfi等[ | 意大利 | 36/36 | (69.3±8.1)/(68.8±7.8) | VRT | TAU | 8周 | UPDRS-III、TUGT、BBS |
| Liao等[ | 中国 | 20/20 | (65.6±8.4)/(68.3±7.1) | VRT | TAU | 6周 | UPDRS-III、TUGT、BBS |
表3
纳入研究中对照的具体内容"
| 研究 | 对照组类型 | 干预内容 | 频率与时长 |
|---|---|---|---|
| 娄峰旗等[ | TAU | 常规康复训练 | — |
| 刘静等[ | TAU | 常规平衡训练 | — |
| 陈思等[ | TAU | 常规平衡训练 | — |
| 林志诚等[ | TAU | 常规平衡训练 | — |
| 冯浩等[ | TAU | 常规康复训练 | — |
| Rosenfeldt等[ | TAU | 标准物理治疗,包括平衡、步态和功能性任务训练 | — |
| Pazzaglia等[ | TAU | 传统康复计划,包括平衡练习、步态训练和上肢功能活动 | 每次40 min,每周3次,共6周 |
| Pompeu等[ | TAU | 平衡锻炼疗法,不使用外部提示或认知刺激 | 每次30 min,每周2次,共7周 |
| Lee等[ | TAU | 常规物理治疗,包括关节活动度、伸展、平衡和步态训练 | — |
| Yuan等[ | TAU | 常规平衡训练 | — |
| Kashif等[ | TAU | 常规物理治疗 | — |
| Goffredo等[ | TAU | 在家自行进行的结构化常规运动活动,包括平衡和下肢运动 | 每周3~5次,共6~10周,共30次 |
| Santos等[ | TAU | 常规锻炼 | — |
| Song等[ | TAU | 常规护理 | — |
| Yang等[ | TAU | 常规平衡训练 | — |
| Gulcan等[ | TAU | 常规物理治疗,包括平衡和步态训练 | — |
| Mirelman等[ | AC | 在跑步机上行走,无VR内容 | 每次 45 min,每周3次,共6周 |
| Feng等[ | TAU | 常规物理治疗,包括重心转移训练、平衡训练、步态训练等 | 每次45 min,每周5次,共12周 |
| Gandolfi等[ | TAU | 在诊所进行的“感觉整合平衡训练” | 每次50 min,每周3次,共7周 |
| Liao等[ | TAU | 常规物理治疗 | — |
| [1] |
PARK J H, KIM D H, KWON D Y, et al. Trends in the incidence and prevalence of Parkinson's disease in Korea: a nationwide, population-based study[J]. BMC Geriatr, 2019, 19(1): 320.
doi: 10.1186/s12877-019-1332-7 |
| [2] |
BASSO V, DÖBRÖSSY M D, THOMPSON L H, et al. State of the art in sub-phenotyping midbrain dopamine neurons[J]. Biology, 2024, 13(9): 690.
doi: 10.3390/biology13090690 |
| [3] | 王子瑜, 王晓慧, 等. 帕金森病动物模型研究进展[J]. 中国神经精神疾病杂志, 2025, 51(3): 186-192. |
| WANG Z Y, WANG X H. Research progress on animal models of Parkinson's disease[J]. Chin J Nerv Ment Dis, 2025, 51(3): 186-192. | |
| [4] |
PEI H, WU Z, MA L, et al. Deep brain stimulation mechanisms in Parkinson's disease: immediate and long-term effects[J]. J Integr Neurosci, 2024, 23(6): 114.
doi: 10.31083/j.jin2306114 pmid: 38940083 |
| [5] |
GE Y, ZHAO W, ZHANG L, et al. Correlation between motor function and health-related quality of life in early to mid-stage patients with Parkinson disease: a cross-sectional observational study[J]. Front Aging Neurosci, 2024, 16: 1399285.
doi: 10.3389/fnagi.2024.1399285 |
| [6] |
LI X, DONG Z Y, DONG M, et al. Early dopaminergic replacement treatment initiation benefits motor symptoms in patients with Parkinson's disease[J]. Front Hum Neurosci, 2024, 18: 1325324.
doi: 10.3389/fnhum.2024.1325324 |
| [7] |
MONTANARI M, MERCURI N B, MARTELLA G. Exceeding the limits with nutraceuticals: looking towards Parkinson's disease and frailty[J]. Int J Mol Sci, 2024, 26(1): 122.
doi: 10.3390/ijms26010122 |
| [8] |
ZHANG Y, LIU S, XU K, et al. Non-pharmacological therapies for treating non-motor symptoms in patients with Parkinson's disease: a systematic review and meta-analysis[J]. Front Aging Neurosci, 2024, 16: 1363115.
doi: 10.3389/fnagi.2024.1363115 |
| [9] | 张树山, 朱陶, 李程旭, 等. 帕金森病非运动症状临床特点研究[J]. 川北医学院学报, 2016, 31(4): 520-524. |
| ZHANG S S, ZHU T, LI C X, et al. Clinical characteristics of non-motor symptoms in Parkinson's disease[J]. J North Sichuan Med Coll, 2016, 31(4): 520-524. | |
| [10] | V H, PK M P K, MG R. Extended reality in revolutionizing neurological disease: a new era for chronic condition treatment[J]. Cureus, 2024, 16(8): e67633. |
| [11] | 邢苑薇, 伊鸣. 基于认知脑科学原理的脑机接口应用转化方案[J]. 微纳电子与智能制造, 2022, 4(3): 83-87. |
| XING Y W, YI M. Application and transformation scheme of brain-computer interface based on cognitive brain science principles[J]. Micro/nano Electron Intell Manuf, 2022, 4(3): 83-87. | |
| [12] |
MAKRANSKY G, PETERSEN G B. The cognitive affective model of immersive learning (CAMIL): a theoretical research-based model of learning in immersive virtual reality[J]. Educ Psychol Rev, 2021, 33(3): 937-958.
doi: 10.1007/s10648-020-09586-2 |
| [13] |
FUSCO A, TIERI G. Challenges and perspectives for clinical applications of immersive and non-immersive virtual reality[J]. J Clin Med, 2022, 11(15): 4540.
doi: 10.3390/jcm11154540 |
| [14] |
COMPARCINI D, SIMONETTI V, GALLI F, et al. Immersive and non-immersive virtual reality for pain and anxiety management in pediatric patients with hematological or solid cancer: a systematic review[J]. Cancers (Basel), 2023, 15(3): 985.
doi: 10.3390/cancers15030985 |
| [15] |
GUO Q, ZHANG L, HAN L L, et al. Effects of virtual reality therapy combined with conventional rehabilitation on pain, kinematic function, and disability in patients with chronic neck pain: randomized controlled trial[J]. JMIR Serious Games, 2024, 12: e42829.
doi: 10.2196/42829 |
| [16] | 娄峰旗, 梅雪, 李娴, 等. 基于虚拟现实技术的卡伦平衡训练对帕金森病患者平衡功能以及上下肢运动能力的影响[J]. 山西医药杂志, 2021, 50(20): 2915-2918. |
| LOU F Q, MEI X, LI X. Effect of Karen balance training based on virtual reality technology on balance function and motor ability of upper and lower limbs in patients with Parkinson's disease[J]. Shanxi Med J, 2021, 50(20): 2915-2918. | |
| [17] | 刘静, 颜智, 廖瑞松, 等. 虚拟现实技术对帕金森病患者平衡功能的康复效果[J]. 中国康复医学杂志, 2020, 35(6): 682-687. |
| LIU J, YAN Z, LIAO R S, et al. Rehabilitation effect of virtual reality technology on balance function in patients with Parkinson's disease[J]. Chin J Rehabil Med, 2020, 35(6): 682-687. | |
| [18] |
陈思, 刘杰, 李顺, 等. 虚拟现实技术对帕金森病患者平衡功能的影响[J]. 中国康复理论与实践, 2017, 23(9): 1091-1095.
doi: 10.3969/j.issn.1006-9771.2017.09.021 |
| CHEN S, LIU J, LI S, et al. Effect of virtual reality technology on balance function in patients with Parkinson's disease[J]. Chin J Rehabil Theory Pract, 2017, 23(9): 1091-1095. | |
| [19] |
林志诚, 陈阿贞, 江一静, 等. 虚拟现实平衡游戏训练对帕金森病患者平衡功能的效果[J]. 中国康复理论与实践, 2016, 22(9): 1059-1063.
doi: 10.3969/j.issn.1006-9771.2016.09.017 |
| LIN Z C, CHEN A Z, JIANG Y J, et al. Effect of virtual reality balance game training on balance function in patients with Parkinson's disease[J]. Chin J Rehabil Theory Pract, 2016, 22(9): 1059-1063. | |
| [20] | 冯浩, 李翠云, 刘镓雨, 等. 虚拟现实训练对帕金森病患者步行能力的影响[J]. 中国卫生标准管理, 2019, 10(12): 32-34. |
| FENG H, LI C Y, LIU J Y, et al. Effect of virtual reality training on walking ability of patients with Parkinson's disease[J]. Chin Health Stand Manag, 2019, 10(12): 32-34. | |
| [21] |
ROSENFELDT A B, STREICHER M C, KAYA R D, et al. An augmented reality dual-task intervention improves postural stability in individuals with Parkinson's disease[J]. Gait Posture, 2025, 115: 102-108.
doi: 10.1016/j.gaitpost.2024.11.007 pmid: 39571253 |
| [22] |
PAZZAGLIA C, IMBIMBO I, TRANCHITA E, et al. Comparison of virtual reality rehabilitation and conventional rehabilitation in Parkinson's disease: a randomised controlled trial[J]. Physiotherapy, 2020, 106: 36-42.
doi: S0031-9406(18)30128-7 pmid: 32026844 |
| [23] |
POMPEU J E, MENDES F A D S, SILVA K G D, et al. Effect of Nintendo WiiTM-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: a randomised clinical trial[J]. Physiotherapy, 2012, 98(3): 196-204.
doi: 10.1016/j.physio.2012.06.004 |
| [24] |
LEE N Y, LEE D K, SONG H S. Effect of virtual reality dance exercise on the balance, activities of daily living, and depressive disorder status of Parkinson's disease patients[J]. J Phys Ther Sci, 2015, 27(1): 145-147.
doi: 10.1589/jpts.27.145 |
| [25] |
YUAN R Y, CHEN S C, PENG C W, et al. Effects of interactive video-game-based exercise on balance in older adults with mild-to-moderate Parkinson's disease[J]. J Neuroeng Rehabil, 2020, 17(1): 91.
doi: 10.1186/s12984-020-00725-y |
| [26] |
KASHIF M, ALBALWI A A, ZULFIQAR A, et al. Effects of virtual reality versus motor imagery versus routine physical therapy in patients with Parkinson's disease: a randomized controlled trial[J]. BMC Geriatr, 2024, 24(1): 229.
doi: 10.1186/s12877-024-04845-1 pmid: 38443801 |
| [27] | GOFFREDO M, BAGLIO F, DE ICCO R, et al. Efficacy of non-immersive virtual reality-based telerehabilitation on postural stability in Parkinson's disease: a multicenter randomized controlled trial[J]. Eur J Phys Rehabil Med, 2023, 59(6): 689-697. |
| [28] |
SANTOS P, MACHADO T, SANTOS L, et al. Efficacy of the Nintendo Wii combination with conventional exercises in the rehabilitation of individuals with Parkinson's disease: a randomized clinical trial[J]. NeuroRehabilitation, 2019, 45(2): 255-263.
doi: 10.3233/NRE-192771 pmid: 31498138 |
| [29] |
SONG J, PAUL S S, CAETANO M J D, et al. Home-based step training using videogame technology in people with Parkinson's disease: a single-blinded randomised controlled trial[J]. Clin Rehabil, 2018, 32(3): 299-311.
doi: 10.1177/0269215517721593 pmid: 28745063 |
| [30] |
YANG W C, WANG H K, WU R M, et al. Home-based virtual reality balance training and conventional balance training in Parkinson's disease: a randomized controlled trial[J]. J Formos Med Assoc, 2016, 115(9): 734-743.
doi: 10.1016/j.jfma.2015.07.012 |
| [31] |
GULCAN K, GUCLU-GUNDUZ A, YASAR E, et al. The effects of augmented and virtual reality gait training on balance and gait in patients with Parkinson's disease[J]. Acta Neurol Belg, 2023, 123(5): 1917-1925.
doi: 10.1007/s13760-022-02147-0 |
| [32] | MIRELMAN A, MAIDAN I, HERMAN T, et al. Virtual reality for gait training: Can it induce motor learning to enhance complex walking and reduce fall risk in patients with Parkinson's disease?[J]. J Gerontol A Biol Sci Med Sci, 2011, 66(2): 234-240. |
| [33] |
FENG H, LI C, LIU J, et al. Virtual reality rehabilitation versus conventional physical therapy for improving balance and gait in Parkinson's disease patients: a randomized controlled trial[J]. Med Sci Monit, 2019, 25: 4186-4192.
doi: 10.12659/MSM.916455 |
| [34] | GANDOLFI M, GEROIN C, DIMITROVA E, et al. Virtual reality telerehabilitation for postural instability in Parkinson's disease: a multicenter, single-blind, randomized, controlled trial[J]. Biomed Res Int, 2017, 2017: 7962826. |
| [35] |
LIAO Y Y, YANG Y R, CHENG S J, et al. Virtual reality-based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson's disease[J]. Neurorehabil Neural Repair, 2015, 29(7): 658-667.
doi: 10.1177/1545968314562111 |
| [36] |
GARAY-SÁNCHEZ A, SUAREZ-SERRANO C, FERRANDO-MARGELÍ M, et al. Effects of immersive and non-immersive virtual reality on the static and dynamic balance of stroke patients: a systematic review and meta-analysis[J]. J Clin Med, 2021, 10(19): 4473.
doi: 10.3390/jcm10194473 |
| [37] |
SOKOLOWSKA B. Being in virtual reality and its influence on brain health: an overview of benefits, limitations and prospects[J]. Brain Sci, 2024, 14(1): 72.
doi: 10.3390/brainsci14010072 |
| [38] |
DRIGAS A, SIDERAKI A. Brain neuroplasticity leveraging virtual reality and brain-computer interface technologies[J]. Sensors (Basel), 2024, 24(17): 5725.
doi: 10.3390/s24175725 |
| [39] | HONZÍKOVÁ L, DĄBROWSKÁ M, SKŘINAŘOVÁ I, et al. Immersive virtual reality as computer-assisted cognitive-motor dual-task training in patients with Parkinson's disease[J]. Medicina (Kaunas), 2025, 61(2): 248. |
| [40] |
AGOSTINI F, CONTI M, MORONE G, et al. The role of virtual reality in postural rehabilitation for patients with Parkinson's disease: a scoping review[J]. Brain Sci, 2024, 15(1): 23.
doi: 10.3390/brainsci15010023 |
| [41] |
HOOGENDOORN E M, GEERSE D J, HELSLOOT J, et al. A larger augmented-reality field of view improves interaction with nearby holographic objects[J]. PLoS One, 2024, 19(10): e0311804.
doi: 10.1371/journal.pone.0311804 |
| [42] | CHANG H, SONG Y, CEN X. Effectiveness of augmented reality for lower limb rehabilitation: a systematic review[J]. Appl Bionics Biomech, 2022, 2022: 4047845. |
| [1] | 高云汉, 侯闪闪, 汪鑫煜, 朱崇田. 基于功能性近红外光谱探讨脑机接口对脑卒中患者上肢运动功能障碍的效果[J]. 《中国康复理论与实践》, 2025, 31(9): 1066-1073. |
| [2] | 陆丹丹, 姚敬智, 李姿, 王柯文, 孙鑫廖, 陈建敏, 许建文. 2014年至2023年帕金森病物理治疗的文献计量学分析[J]. 《中国康复理论与实践》, 2025, 31(8): 906-913. |
| [3] | 王晓锋, 胡梦巧, 汪嫣, 魏坤, 徐文竹, 任丹, 马晔. 外骨骼机器人辅助步态训练对脑卒中和脊髓损伤下肢功能康复效果的系统综述[J]. 《中国康复理论与实践》, 2025, 31(8): 914-921. |
| [4] | 杜雯倩, 张旭, 陈继伟, 王兴, 朱昆. 运动干预对帕金森病冻结步态效果的Meta分析[J]. 《中国康复理论与实践》, 2025, 31(7): 781-789. |
| [5] | 刘璇, 高玲, 褚凤明, 陈杰, 张明. 脑机接口联合上肢康复机器人对脑卒中患者上肢功能的影响[J]. 《中国康复理论与实践》, 2025, 31(6): 703-710. |
| [6] | 周天添, 张通, 张琦, 梁艳华, 张燕庆, 岳青, 李思佳. Lokomat机器人辅助步行训练对偏瘫儿童下肢运动功能的效果[J]. 《中国康复理论与实践》, 2025, 31(6): 711-720. |
| [7] | 施滨, 徐宁, 周广雪. 镜像疗法应用于脑卒中运动功能康复的文献计量分析[J]. 《中国康复理论与实践》, 2025, 31(5): 561-572. |
| [8] | 李鑫磊, 魏伟, 宋健, 赵雨晴, 孔维橙, 蔡嘉玉, 施浩然, 薛偕华. 静息态脑电图在脑卒中患者上肢运动功能评估中的应用[J]. 《中国康复理论与实践》, 2025, 31(4): 448-457. |
| [9] | 何爱群, 黎景波, 刘海鸥, 宋秋爽, 何茂莉, 林如敏. 上肢机器人启动训练后双侧上肢训练对脑卒中重度偏瘫上肢功能的效果[J]. 《中国康复理论与实践》, 2025, 31(11): 1265-1270. |
| [10] | 毛涛, 游茂林. 运动干预对帕金森病患者呼吸功能效果的Meta分析[J]. 《中国康复理论与实践》, 2025, 31(11): 1303-1313. |
| [11] | 徐胜, 张敏, 杨青青, 王庆雷, 耿阿燕, 王彤, 郭川. 功能性电刺激手摇车对脑卒中患者脑网络功能连接的功能性近红外光谱研究[J]. 《中国康复理论与实践》, 2025, 31(10): 1181-1187. |
| [12] | 于子夫, 杨晓霞, 赵霞, 曹新燕, 陈良侠, 刘西花. 头针联合皮内针同步康复疗法对脑卒中患者上肢运动功能的效果[J]. 《中国康复理论与实践》, 2025, 31(10): 1194-1205. |
| [13] | 马凌燕, 曹杰, 陈仲略, 任康, 冯涛. 基于语音特征的帕金森病与多系统萎缩帕金森型的早期鉴别诊断[J]. 《中国康复理论与实践》, 2025, 31(10): 1227-1233. |
| [14] | 杨文睿, 崔思栋, 曾莉. 虚拟与增强现实对孤独症谱系障碍儿童青少年认知、情绪和适应性行为干预效果的系统综述[J]. 《中国康复理论与实践》, 2024, 30(9): 1026-1033. |
| [15] | 罗红, 徐丽. 重复经颅磁刺激联合重复外周磁刺激对脑出血患者上肢运动功能的效果:基于静息态功能磁共振成像的随机对照试验[J]. 《中国康复理论与实践》, 2024, 30(9): 1060-1068. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
||