| [1] |
TINTI L, LAWSON T, MOLTENI E, et al. Research considerations for prospective studies of patients with coma and disorders of consciousness[J]. Brain Commun, 2024, 6(1): fcad022.
|
| [2] |
HUANG W, CHEN Q, LIU J, et al. Transcranial magnetic stimulation in disorders of consciousness: an update and perspectives[J]. Aging Dis, 2023, 14(4): 1171-1183.
|
| [3] |
中国医师协会神经修复专业委员会意识障碍与促醒学组. 慢性意识障碍诊断与治疗中国专家共识[J]. 中华神经医学杂志, 2020, 19(10): 977-982.
|
|
Group of Disorders of Consciousness and Conscious Promotion, Professional Committee of Neurorepair, Chinese Medical Doctor Association. Diagnoses and treatments of prolonged disorders of consciousness: an experts consensus[J]. Chin J Neuromed, 2020, 19(10): 977-982.
|
| [4] |
何晨, 宋明, 徐珑. 慢性意识障碍神经调控治疗进展[J]. 中国现代神经疾病杂志, 2025, 25(1): 48-56.
doi: 10.3969/j.issn.1672-6731.2025.01.007
|
|
HE C, SONG M, XU L. Advances in neuromodulation for treatment of prolonged disorders of consciousness[J]. Chin J Contemp Neurol Neurosurg, 2025, 25(1): 48-56.
doi: 10.3969/j.issn.1672-6731.2025.01.007
|
| [5] |
BERNAL-JIMÉNEZ J J, DILEONE M, MORDILLO-MATEOS L, et al. Combining transcranial direct current stimulation with hand robotic rehabilitation in chronic stroke patients: a double-blind randomized clinical trial[J]. Am J Phys Med Rehabil, 2024, 103(10): 875-882.
|
| [6] |
FAN W, FAN Y, LIAO Z, et al. Effect of transcranial direct current stimulation on patients with disorders of consciousness: a systematic review and meta-analysis[J]. Am J Phys Med Rehabil, 2023, 102(12): 1102-1110.
|
| [7] |
LIU S, GAO Q, GUAN M, et al. Effectiveness of transcranial direct current stimulation over dorsolateral prefrontal cortex in patients with prolonged disorders of consciousness: a systematic review and meta-analysis[J]. Front Neurol, 2022, 13: 998953.
|
| [8] |
GANGEMI A, DE LUCA R, FABIO R A, et al. Cognitive effects of transcranial direct current stimulation plus robotic verticalization in minimally conscious state[J]. Biomedicines, 2024, 12(10): 2244.
|
| [9] |
LEE Y S, SHIM M, CHOI G Y, et al. Neuromodulatory feasibility of a current limiter-based tDCS device: a resting-state electroencephalography study[J]. Biomed Eng Lett, 2023, 13(3): 407-415.
|
| [10] |
KIM P J, KIM H T, CHOI B, et al. Graph approaches for analysis of brain connectivity during dexmedetomidine sedation[J]. Neurosci Lett, 2023, 797: 137060.
|
| [11] |
MAJDI A, ASAMOAH B, MCLAUGHLIN M. Understanding novel neuromodulation pathways in tDCS: brain stem recordings in rats during trigeminal nerve direct current stimulation[J]. Transl Psychiatry, 2024, 14(1): 456.
|
| [12] |
JAEGER C, NUTTALL R, ZIMMERMANN J, et al. Targeted rhythmic visual stimulation at individual participants' intrinsic alpha frequency causes selective increase of occipitoparietal BOLD-fMRI and EEG functional connectivity[J]. Neuroimage, 2023, 270: 119981.
|
| [13] |
CHEN J, SHI Y, DONG Z, et al. Research hotspots and trends in the application of electroencephalography for assessment of disorders of consciousness: a bibliometric analysis[J]. Front Neurol, 2025, 15: 1501947.
|
| [14] |
CARNEIRO T, GOSWAMI S, SMITH C N, et al. Prolonged monitoring of brain electrical activity in the intensive care unit[J]. Neurol Clin, 2025, 43(1): 31-50.
doi: 10.1016/j.ncl.2024.08.001
pmid: 39547740
|
| [15] |
GUO Y, CAO B, HE Y, et al. Disrupted multi-scale topological organization of directed functional brain networks in patients with disorders of consciousness[J]. Brain Commun, 2023, 5(2): fcad069.
|
| [16] |
TROYAS C, OSTERTAG J, SCHNEIDER G, et al. Changes in intra- and cross-hemispheric directed functional connectivity in the electroencephalographic signals during propofol-induced loss of consciousness[J]. Anesthesiology, 2025, 142(1): 142-154.
|
| [17] |
CHEN Z, JI X, LI T, et al. Lateralization difference in functional activity during Stroop tasks: a functional near-infrared spectroscopy and EEG simultaneous study[J]. Front Psychiatry, 2023, 14: 1221381.
|
| [18] |
ZHANG S, CUI H, LI Y, et al. Improving SSVEP-BCI performance through repetitive anodal tDCS-based neuromodulation: insights from fractal EEG and brain functional connectivity[J]. IEEE Trans Neural Syst Rehabil Eng, 2024, 32: 1647-1656.
|
| [19] |
中国残疾人康复协会,中国康复医学会,中国康复研究中心. 慢性意识障碍康复中国专家共识[J]. 中国康复理论与实践, 2023, 29(2): 125-139.
doi: 10.3969/j.issn.1006-9771.2023.02.001
|
|
China Association of Rehabilitation of Disabled Persons, China Association of Rehabilitation Medicine, China Rehabilitation Research Center. China expert consensus on rehabilitation of prolonged disorders of consciousness[J]. Chin J Rehabil Theory Pract, 2023, 29(2): 125-139.
|
| [20] |
GRABARCZYK L. Assessment of the potential of modern diagnostic tools in differentiation of minimum conscious state from the vegetative state[J]. Ann Neurosci, 2024, 26: 09727531241254214.
|
| [21] |
BODIEN Y G, VORA I, BARRA A, et al. Feasibility and validity of the Coma Recovery Scale-Revised for accelerated standardized testing: a practical assessment tool for detecting consciousness in the intensive care unit[J]. Ann Neurol, 2023, 94(5): 919-924.
doi: 10.1002/ana.26740
pmid: 37488068
|
| [22] |
WOODS A J, ANTAL A, BIBSON M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools[J]. Clin Neurophysiol, 2016, 127(2): 1031-1048.
doi: S1388-2457(15)01088-3
pmid: 26652115
|
| [23] |
JOG M A, ANDERSON C, KUBICKI A, et al. Transcranial direct current stimulation (tDCS) in depression induces structural plasticity[J]. Sci Rep, 2023, 13(1): 2841.
doi: 10.1038/s41598-023-29792-6
pmid: 36801903
|
| [24] |
TARANTINO V, FONTANA M L, BUTTÀ A, et al. Increase in EEG alpha-to-theta ratio after transcranial direct current stimulation (tDCS) in patients with disorders of consciousness: a pilot study[J]. NeuroRehabilitation, 2024, 55(4): 440-447.
|
| [25] |
LI K, LUO X, ZENG Q, et al. Gray matter structural covariance networks patterns associated with autopsy-confirmed LATE-NC compared to Alzheimer's disease pathology[J]. Neurobiol Dis, 2023, 189: 106354.
|
| [26] |
KHAN A, ANTONAKAKIS M, SUNTRUP-KRUEGER S, et al. Can individually targeted and optimized multi-channel tDCS outperform standard bipolar tDCS in stimulating the primary somatosensory cortex?[J]. Brain Stimul, 2023, 16(1): 1-16.
|
| [27] |
BARRA A, HUERTA-GUTIERREZ R, ANNEN J, et al. Characterization of responders to transcranial direct current stimulation in disorders of consciousness: a retrospective study of 8 clinical trials[J]. Neurotherapeutics, 2025: e00587.
|
| [28] |
JIN X, LIANG Z, WEN X, et al. The characteristics of electroencephalogram signatures in minimally conscious state patients induced by general anesthesia[J]. IEEE Trans Biomed Eng, 2023, 70(11): 3239-3247.
|
| [29] |
FURUKAWA R, KUME K, TATENO T. Analyzing the transient response dynamics of long-term depression in the mouse auditory cortex in vitro through multielectrode-array-based spatiotemporal recordings[J]. Front Neurosci, 2024, 18: 1448365.
|
| [30] |
CHEN C, HAN J, ZHENG S, et al. Dynamic changes of brain activity in different responsive groups of patients with prolonged disorders of consciousness[J]. Brain Sci, 2022, 13(1): 5.
|
| [31] |
LI S, HE Y, TURNER D, et al. Electrophysiological phenotypes of hippocampal synaptic and network functions in cannabinoid receptor 2 knockout mice[J]. Cannabis Cannabinoid Res, 2024, 9(5): 1267-1276.
|
| [32] |
OLGIATI E, VIOLANTE I R, XU S, et al. Targeted non-invasive brain stimulation boosts attention and modulates contralesional brain networks following right hemisphere stroke[J]. Neuroimage Clin, 2024, 42: 103599.
|
| [33] |
MISSELHORN J, FIENE M, RADECKE J O, et al. Transcranial alternating current stimulation over frontal eye fields mimics attentional modulation of visual processing[J]. J Neurosci, 2024, 44(25): e1510232024.
|
| [34] |
ZIOGA I, KENETT Y N, GIANNOPOULOS A, et al. The role of alpha oscillations in free- and goal-directed semantic associations[J]. Hum Brain Mapp, 2024, 45(10): e26770.
|
| [35] |
LUCHINI S A, ZHANG X, WHITE R T, et al. Enhancing creativity with covert neurofeedback: causal evidence for default-executive network coupling in creative thinking[J]. Cereb Cortex, 2025, 35(4): bhaf065.
|
| [36] |
STEIN J, KORB F M, GOSCHKE T, et al. Salience network resting-state functional connectivity predicts self-controlled decision-making[J]. Sci Rep, 2025, 15(1): 16332.
|
| [37] |
WHEELOCK M D, STRAIN J F, MANSFIELD P, et al. Brain network decoupling with increased serum neurofilament and reduced cognitive function in Alzheimer's disease[J]. Brain, 2023, 146(7): 2928-2943.
doi: 10.1093/brain/awac498
pmid: 36625756
|
| [38] |
BAI Y, YANG L, MENG X, et al. Breakdown of effective information flow in disorders of consciousness: insights from TMS-EEG[J]. Brain Stimul, 2024, 17(3): 533-542.
doi: 10.1016/j.brs.2024.04.011
pmid: 38641169
|
| [39] |
PANDA R, THIBAUT A, LOPEZ-GONZALEZ A, et al. Disruption in structural-functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness[J]. eLife, 2022, 11: e77462.
|
| [40] |
BANWINKLER M, THEIS H, PRANGE S, et al. Imaging the limbic system in Parkinson's disease: a review of limbic pathology and clinical symptoms[J]. Brain Sci, 2022, 12(9): 1248.
|
| [41] |
ZHU C, FU Z, CHEN L, et al. Multi-modality connectome-based predictive modeling of individualized compulsions in obsessive-compulsive disorder[J]. J Affect Disord, 2022, 311: 595-603.
|