《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2022, Vol. 28 ›› Issue (2): 175-182.doi: 10.3969/j.issn.1006-9771.2021.00.005
Previous Articles Next Articles
LI Xiaokun1(),LIU Xu2,LIU Jianhua3a,RAO Zhiheng1,Yongde LUO1,CHEN Keyang1,ZHANG Tong3b
Received:
2021-08-10
Revised:
2021-08-21
Published:
2022-02-25
Online:
2022-03-09
Contact:
LI Xiaokun
E-mail:xiaokunli@wmu.edu.cn
CLC Number:
LI Xiaokun,LIU Xu,LIU Jianhua,RAO Zhiheng,Yongde LUO,CHEN Keyang,ZHANG Tong. Progress of cellular growth factors in neurorehabilitation and neuroplasticity[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2022, 28(2): 175-182.
[1] |
EBADI M, BASHIR R M, HEIDRICK M L, et al. Neurotrophins and their receptors in nerve injury and repair[J]. Neurochem Int, 1997, 30(4-5): 347-374.
doi: 10.1016/S0197-0186(96)00071-X |
[2] |
COWAN W M. Viktor Hamburger and Rita Levi-Montalcini: the path to the discovery of nerve growth factor[J]. Annu Rev Neurosci, 2001, 24: 551-600.
doi: 10.1146/neuro.2001.24.issue-1 |
[3] |
KURUVILLA R, ZWEIFEL L S, GLEBOVA N O, et al. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling[J]. Cell, 2004, 118(2): 243-255.
doi: 10.1016/j.cell.2004.06.021 |
[4] | 李校堃, 肖倩, 韩静, 等. 基因工程药物开发热点——成纤维细胞生长因子家族[J]. 中国医药生物技术, 2010, 5(5): 325-334. |
LI X K, XIAO Q, HAN J, et al. The hot spot of genetic engineering drug development-fibroblast growth factors family[J]. Chin Med Biotechnol, 2010, 5(5): 325-334. | |
[5] |
PARKHURST C N, YANG G, NINAN I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor[J]. Cell, 2013, 155(7): 1596-1609.
doi: 10.1016/j.cell.2013.11.030 |
[6] |
WANG P, LOH K H, WU M, et al. A leptin-BDNF pathway regulating sympathetic innervation of adipose tissue[J]. Nature, 2020, 583(7818): 839-844.
doi: 10.1038/s41586-020-2527-y |
[7] |
XIAO J, LIN Z, QIN H, et al. Growth factor regulatory system: a new system for not truly recognized organisms[J]. Sci Chin Life Sci, 2020, 63(3): 443-446.
doi: 10.1007/s11427-019-1590-x |
[8] |
SASMITA A O, KURUVILLA J, LING A. Harnessing neuroplasticity: modern approaches and clinical future[J]. Int J Neurosci, 2018, 128(11): 1061-1077.
doi: 10.1080/00207454.2018.1466781 |
[9] |
SHOOTER E M. Early days of the nerve growth factor proteins[J]. Annu Rev Neurosci, 2001, 24: 601-629.
doi: 10.1146/neuro.2001.24.issue-1 |
[10] |
SENGER D R, GALLI S J, DVORAK A M, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid[J]. Science, 1983, 219(4587): 983-985.
doi: 10.1126/science.6823562 |
[11] | MALCZYNSKA P, PIOTROWICZ Z, DRABAREK D, et al. [The role of the brain-derived neurotrophic factor (BDNF) in neurodegenerative processes and in the neuroregeneration mechanisms induced by increased physical activity][J]. [in Polish]. Postepy Biochem, 2019, 65(1): 2-8. |
[12] |
IWATA T, HEVNER R F. Fibroblast growth factor signaling in development of the cerebral cortex[J]. Dev Growth Differ, 2009, 51(3): 299-323.
doi: 10.1111/j.1440-169X.2009.01104.x |
[13] | SZCZURKOWSKA J, PISCHEDDA F, PINTO B, et al. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice[J]. Brain, 2018, 141(9): 2772-2794. |
[14] |
DING X W, LI R, GEETHA T, et al. Nerve growth factor in metabolic complications and Alzheimer's disease: physiology and therapeutic potential[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(10): 165858.
doi: 10.1016/j.bbadis.2020.165858 |
[15] |
AISA M C, BARBATI A, CAPPUCCINI B, et al. Urinary nerve growth factor in full-term, preterm and intra uterine growth restriction neonates: association with brain growth at 30-40 days of postnatal period and with neuro-development outcome at two years. A pilot study[J]. Neurosci Lett, 2021, 741: 135459.
doi: 10.1016/j.neulet.2020.135459 |
[16] |
LI X, WANG C, XIAO J, et al. Fibroblast growth factors, old kids on the new block[J]. Semin Cell Dev Biol, 2016, 53: 155-167.
doi: 10.1016/j.semcdb.2015.12.014 |
[17] | 胡文娟, 黄巨恩, 李校, 等. 改构型酸性成纤维细胞因子的分子基础与生物学效应[J]. 解剖科学进展, 2007(2): 173-175. |
HU W J, HUANG J E, LI X, et al. Molecular bases and biological effects of modified acidic fibroblast growth factor[J]. Prog Anatomic Sci, 2007(2): 173-175. | |
[18] | 张超, 项丽娜, 陈德培, 等. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79. |
ZHANG C, XIANG L N, CHEN D P, et al. The development of the study on bFGF promote the nerve injury repair[J]. Chin Biotechnol, 2015, 35(6): 75-79. | |
[19] |
WUESTEFELD R, CHEN J, MELLER K, et al. Impact of VEGF on astrocytes: analysis of gap junctional intercellular communication, proliferation, and motility[J]. Glia, 2012, 60(6): 936-947.
doi: 10.1002/glia.v60.6 |
[20] |
SENDTNER M, KREUTZBERG G W, THOENEN H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy[J]. Nature, 1990, 345(6274): 440-441.
doi: 10.1038/345440a0 |
[21] |
GULYAEVA N V. Molecular mechanisms of neuroplasticity: an expanding universe[J]. Biochemistry (Mosc), 2017, 82(3): 237-242.
doi: 10.1134/S0006297917030014 |
[22] | KALOGERIS T, BAINES C P, KRENZ M, et al. Cell biology of ischemia/reperfusion injury[J]. Int Rev Cell Mol Biol, 2012, 298: 229-317. |
[23] |
SHAKHBAZAU A, MARTINEZ J A, XU Q G, et al. Evidence for a systemic regulation of neurotrophin synjournal in response to peripheral nerve injury[J]. J Neurochem, 2012, 122(3): 501-511.
doi: 10.1111/jnc.2012.122.issue-3 |
[24] |
FAUSTINO C, RIJO P, REIS C P. Nanotechnological strategies for nerve growth factor delivery: therapeutic implications in Alzheimer's disease[J]. Pharmacol Res, 2017, 120: 68-87.
doi: 10.1016/j.phrs.2017.03.020 |
[25] |
YANG J, WU S, HOU L, et al. Therapeutic effects of simultaneous delivery of nerve growth factor mRNA and protein via exosomes on cerebral ischemia[J]. Mol Ther Nucleic Acids, 2020, 21: 512-522.
doi: 10.1016/j.omtn.2020.06.013 |
[26] |
JIN K L, MAO X O, GREENBERG D A. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia[J]. Proc Natl Acad Sci U S A, 2000, 97(18): 10242-10247.
doi: 10.1073/pnas.97.18.10242 |
[27] |
XU Z, HAN K, CHEN J, et al. Vascular endothelial growth factor is neuroprotective against ischemic brain injury by inhibiting scavenger receptor A expression on microglia[J]. J Neurochem, 2017, 142(5): 700-709.
doi: 10.1111/jnc.14108 |
[28] | FANG M, HE D, ZHANG F, et al. Antineuroinflammatory and neurotrophic effects of CNTF and C16 peptide in an acute experimental autoimmune encephalomyelitis rat model[J]. Front Neuroanat, 2013, 7: 44. |
[29] |
GU Y L, GAO G Q, MA N, et al. CNTF protects neurons from hypoxic injury through the activation of STAT3pTyr705[J]. Int J Mol Med, 2016, 38(6): 1915-1921.
doi: 10.3892/ijmm.2016.2769 |
[30] |
BLOCH J, BACHOUD-LEVI A C, DEGLON N, et al. Neuroprotective gene therapy for Huntington's disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study[J]. Hum Gene Ther, 2004, 15(10): 968-975.
doi: 10.1089/hum.2004.15.968 |
[31] |
LIU M, WU Y, LIU Y, et al. Basic fibroblast growth factor protects astrocytes against ischemia/reperfusion injury by upregulating the caveolin-1/VEGF signaling pathway[J]. J Mol Neurosci, 2018, 64(2): 211-223.
doi: 10.1007/s12031-017-1023-9 |
[32] |
ZHANG H Y, ZHANG X, WANG Z G, et al. Exogenous basic fibroblast growth factor inhibits ER stress-induced apoptosis and improves recovery from spinal cord injury[J]. CNS Neurosci Ther, 2013, 19(1): 20-29.
doi: 10.1111/cns.2012.19.issue-1 |
[33] |
SLEEMAN I J, BOSHOFF E L, DUTY S. Fibroblast growth factor-20 protects against dopamine neuron loss in vitro and provides functional protection in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease[J]. Neuropharmacology, 2012, 63(7): 1268-1277.
doi: 10.1016/j.neuropharm.2012.07.029 |
[34] |
YE L, WANG X, CAI C, et al. FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/beta-klotho[J]. Exp Neurol, 2019, 317: 34-50.
doi: 10.1016/j.expneurol.2019.02.013 |
[35] |
WANG H W, JIANG X, ZHANG Y, et al. FGF21 protects against hypoxia injury through inducing HSP72 in cerebral microvascular endothelial cells[J]. Front Pharmacol, 2019, 10: 101.
doi: 10.3389/fphar.2019.00101 |
[36] |
WANG D, LIU F, ZHU L, et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages[J]. J Neuroinflammation, 2020, 17(1): 257.
doi: 10.1186/s12974-020-01921-2 |
[37] |
TODOROVA V, BLOKLAND A. Mitochondria and synaptic plasticity in the mature and aging nervous system[J]. Curr Neuropharmacol, 2017, 15(1): 166-173.
doi: 10.2174/1570159X14666160414111821 |
[38] |
ZHOU F Q, ZHOU J, DEDHAR S, et al. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC[J]. Neuron, 2004, 42(6): 897-912.
doi: 10.1016/j.neuron.2004.05.011 |
[39] |
ALOE L, ROCCO M L, BALZAMINO B O, et al. Nerve growth factor: a focus on neuroscience and therapy[J]. Curr Neuropharmacol, 2015, 13(3): 294-303.
doi: 10.2174/1570159X13666150403231920 |
[40] |
LI R, LI D H, ZHANG H Y, et al. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration[J]. Acta Pharmacol Sin, 2020, 41(10): 1289-1300.
doi: 10.1038/s41401-019-0338-1 |
[41] | LI S, LU Y, DING D, et al. Fibroblast growth factor 2 contributes to the effect of salidroside on dendritic and synaptic plasticity after cerebral ischemia/reperfusion injury[J]. Aging (Albany NY), 2020, 12(11): 10951-10968. |
[42] |
LI R, ZOU S, WU Y, et al. Heparin-based coacervate of bFGF facilitates peripheral nerve regeneration by inhibiting endoplasmic reticulum stress following sciatic nerve injury[J]. Oncotarget, 2017, 8(29): 48086-48097.
doi: 10.18632/oncotarget.v8i29 |
[43] |
TSAI M C, SHEN L F, KUO H S, et al. Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach[J]. Mol Cell Proteomics, 2008, 7(9): 1668-1687.
doi: 10.1074/mcp.M800076-MCP200 |
[44] |
GNAVI S, DI BLASIO L, TONDA-TURO C, et al. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering[J]. J Tissue Eng Regen Med, 2017, 11(2): 459-470.
doi: 10.1002/term.v11.2 |
[45] | STANOJLOVIC M, PANG X, LIN Y, et al. Inhibition of vascular endothelial growth factor receptor 2 exacerbates loss of lower motor neurons and axons during experimental autoimmune encephalomyelitis[J]. PLoS One, 2016, 11(7): e160158. |
[46] |
YANG J, YANG C, LIU C, et al. Paradoxical effects of VEGF on synaptic activity partially involved in notch1 signaling in the mouse hippocampus[J]. Hippocampus, 2016, 26(5): 589-600.
doi: 10.1002/hipo.v26.5 |
[47] |
HOHMAN T J, BELL S P, JEFFERSON A L. The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease[J]. JAMA Neurol, 2015, 72(5): 520-529.
doi: 10.1001/jamaneurol.2014.4761 |
[48] |
CHO Y, SHIN J E, EWAN E E, et al. Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-1alpha[J]. Neuron, 2015, 88(4): 720-734.
doi: 10.1016/j.neuron.2015.09.050 |
[49] |
HANINEC P, KAISER R, BOBEK V, et al. Enhancement of musculocutaneous nerve reinnervation after vascular endothelial growth factor (VEGF) gene therapy[J]. BMC Neurosci, 2012, 13: 57.
doi: 10.1186/1471-2202-13-57 |
[50] |
WEN R, TAO W, LI Y, et al. CNTF and retina[J]. Prog Retin Eye Res, 2012, 31(2): 136-151.
doi: 10.1016/j.preteyeres.2011.11.005 |
[51] | JOLY S, DALKARA D, PERNET V. Sphingosine 1-phosphate receptor 1 modulates CNTF-induced axonal growth and neuroprotection in the mouse visual system[J]. Neural Plast, 2017, 2017: 6818970. |
[52] |
KANG S S, KEASEY M P, ARNOLD S A, et al. Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice[J]. Neurobiol Dis, 2013, 49: 68-78.
doi: 10.1016/j.nbd.2012.08.020 |
[53] | 李强, 刘媛, 李民, 等. 神经生长因子与睫状神经营养因子促进感觉和运动纤维再生的差异性研究[J]. 中华整形外科杂志, 2006, 22(5): 371-374. |
LI Q, LIU Y, LI M, et al. The difference of nerve growth factor and ciliary neurotrophic factor between the sensitive and motor fibres regeneration[J]. Zhonghua Zheng Xing Wai Ke Za Zhi, 2006, 22(5): 371-374. | |
[54] |
KEEFE K M, SHEIKH I S, SMITH G M. Targeting neurotrophins to specific populations of neurons: NGF, BDNF, and NT-3 and their relevance for treatment of spinal cord injury[J]. Int J Mol Sci, 2017, 18(3): 548.
doi: 10.3390/ijms18030548 |
[55] |
MCGREGOR C E, IRWIN A M, ENGLISH A W. The Val66Met BDNF polymorphism and peripheral nerve injury: enhanced regeneration in mouse met-carriers is not further improved with activity-dependent treatment[J]. Neurorehabil Neural Repair, 2019, 33(6): 407-418.
doi: 10.1177/1545968319846131 |
[56] |
WANG S, YAO H, XU Y, et al. Therapeutic potential of a TrkB agonistic antibody for Alzheimer's disease[J]. Theranostics, 2020, 10(15): 6854-6874.
doi: 10.7150/thno.44165 |
[57] |
HU Y, ZHANG Y, TIAN K, et al. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro[J]. Mol Med Rep, 2016, 13(1): 49-58.
doi: 10.3892/mmr.2015.4553 |
[58] |
FU X, SUN X, LI X, et al. Dedifferentiation of epidermal cells to stem cells in vivo[J]. Lancet, 2001, 358(9287): 1067-1068.
doi: 10.1016/S0140-6736(01)06202-X |
[59] |
KEMP S W, WALSH S K, MIDHA R. Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair[J]. Neurol Res, 2008, 30(10): 1030-1038.
doi: 10.1179/174313208X362505 |
[60] |
URENA-GUERRERO M E, CASTANEDA-CABRAL J L, RIVERA-CERVANTES M C, et al. Neuroprotective and neurorestorative effects of Epo and VEGF: perspectives for new therapeutic approaches to neurological diseases[J]. Curr Pharm Des, 2020, 26(12): 1263-1276.
doi: 10.2174/1381612826666200114104342 |
[61] | LI X, LI F, LING L, et al. Intranasal administration of nerve growth factor promotes angiogenesis via activation of PI3K/Akt signaling following cerebral infarction in rats[J]. Am J Transl Res, 2018, 10(11): 3481-3492. |
[62] |
ZOU Y, HU J, HUANG W, et al. Non-mitogenic fibroblast growth factor 1 enhanced angiogenesis following ischemic stroke by regulating the sphingosine-1-phosphate 1 pathway[J]. Front Pharmacol, 2020, 11: 59.
doi: 10.3389/fphar.2020.00059 |
[63] |
LIN L, WANG Q, QIAN K, et al. bFGF protects against oxygen glucose deprivation/reoxygenation-induced endothelial monolayer permeability via S1PR1-dependent mechanisms[J]. Mol Neurobiol, 2018, 55(4): 3131-3142.
doi: 10.1007/s12035-017-0544-0 |
[64] |
CHEN J, HU J, LIU H, et al. FGF21 protects the blood-brain barrier by upregulating PPARgamma via FGFR1/beta-klotho after traumatic brain injury[J]. J Neurotrauma, 2018, 35(17): 2091-2103.
doi: 10.1089/neu.2017.5271 |
[65] |
JIANG Y, LIN L, LIU N, et al. FGF21 Protects against aggravated blood-brain barrier disruption after ischemic focal stroke in diabetic db/db male mice via cerebrovascular PPARgamma activation[J]. Int J Mol Sci, 2020, 21(3): 824.
doi: 10.3390/ijms21030824 |
[66] |
PECKHAM H, GIUFFRIDA L, WOOD R, et al. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination[J]. Glia, 2016, 64(2): 255-269.
doi: 10.1002/glia.22927 |
[67] |
RICHNER M, ULRICHSEN M, ELMEGAARD S L, et al. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system[J]. Mol Neurobiol, 2014, 50(3): 945-970.
doi: 10.1007/s12035-014-8706-9 |
[68] |
RAMOS-CEJUDO J, GUTIERREZ-FERNANDEZ M, OTERO-ORTEGA L, et al. Brain-derived neurotrophic factor administration mediated oligodendrocyte differentiation and myelin formation in subcortical ischemic stroke[J]. Stroke, 2015, 46(1): 221-228.
doi: 10.1161/STROKEAHA.114.006692 |
[69] |
LU J, YAN X, SUN X, et al. Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration[J]. Nanoscale, 2019, 11(42): 19943-19958.
doi: 10.1039/C9NR04521J |
[70] | CHEN B, HU R, MIN Q, et al. FGF5 regulates schwann cell migration and adhesion[J]. Front Cell Neurosci, 2020, 14: 237. |
[71] |
KURODA M, MURAMATSU R, MAEDERA N, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system[J]. J Clin Invest, 2017, 127(9): 3496-3509.
doi: 10.1172/JCI94337 |
[72] |
LI R, LI Y, WU Y, et al. Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats[J]. Biomaterials, 2018, 168: 24-37.
doi: 10.1016/j.biomaterials.2018.03.044 |
[73] | 吴艳青, 肖健, 李校堃. 成纤维细胞生长因子在神经损伤修复中作用的研究进展[J]. 药学进展, 2019, 43(1): 12-18. |
WU Y Q, XIAO J, LI X K. Research progress in the effect of fibroblast growth factors on the recovery of nerve injury[J]. Prog Pharmaceutic Sci, 2019, 43(1): 12-18. | |
[74] | TSAI C L, WANG C H, PAN C Y, et al. The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly[J]. Front Behav Neurosci, 2015, 9: 23. |
[75] |
SUN L, SUN Q, QI J. Adult hippocampal neurogenesis: an important target associated with antidepressant effects of exercise[J]. Rev Neurosci, 2017, 28(7): 693-703.
doi: 10.1515/revneuro-2016-0076 |
[76] |
DING Q, YING Z, GOMEZ-PINILLA F. Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing[J]. Neuroscience, 2011, 192: 773-780.
doi: 10.1016/j.neuroscience.2011.06.032 |
[77] | PATTEN A R, YAU S Y, FONTAINE C J, et al. The benefits of exercise on structural and functional plasticity in the rodent hippocampus of different disease models[J]. Brain Plast, 2015, 1(1): 97-127. |
[78] |
MANG C S, CAMPBELL K L, ROSS C J, et al. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor[J]. Phys Ther, 2013, 93(12): 1707-1716.
doi: 10.2522/ptj.20130053 |
[79] | ZHAO H Y, WU J, ZHU J J, et al. Research advances in tissue engineering materials for sustained release of growth factors[J]. Biomed Res Int, 2015, 2015: 808202. |
[80] | 李妍慧, 李寿, 方崇涛. 鼠神经生长因子临床应用研究[J]. 医药前沿, 2016, 6(31): 65-66. |
LI Y H, LI S, FANG C T. Clinical application of mouse nerve growth factor[J]. J Front Med, 2016, 6(31): 65-66. | |
[81] |
HATCHER J B, SOIFER M, MORALES N G, et al. Aftermarket effects of cenegermin for neurotrophic keratopathy in pediatric patients[J]. Ocul Surf, 2021, 21: 52-57.
doi: 10.1016/j.jtos.2021.04.003 |
[82] |
VADHAN-RAJ S, GOLDBERG J D, PERALES M A, et al. Clinical applications of palifermin: amelioration of oral mucositis and other potential indications[J]. J Cell Mol Med, 2013, 17(11): 1371-1384.
doi: 10.1111/jcmm.2013.17.issue-11 |
[83] | 吴艳青, 肖健, 李校堃. 成纤维细胞生长因子的转化研究及药物研发进展[J]. 生物产业技术, 2016(6): 21-24. |
WU Y Q, XIAO J, LI X K. Transformation research of fibroblast growth factors and progress in drug development[J]. Biotechnol Business, 2016(6): 21-24. | |
[84] |
KAUPER K, MCGOVERN C, SHERMAN S, et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases[J]. Invest Ophthalmol Vis Sci, 2012, 53(12): 7484-7491.
doi: 10.1167/iovs.12-9970 |
[85] | BI G, ZHANG Q, ZHANG Y, et al. Therapeutic effect of transmembrane TAT-tCNTF via Erk and Akt activation using in vitro and in vivo models of Alzheimer's disease[J]. Int J Clin Exp Pathol, 2018, 11(4): 1855-1865. |
[1] | SHAO Weiting, LEI Jianghua. Effect of response interruption and redirection as a behavioral intervention on vocal stereotypy in children with autism spectrum disorder: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 10-20. |
[2] | WANG Hangyu, GE Keke, FAN Yonghong, DU Lilu, ZOU Min, FENG Lei. Effect of active music therapy on cognitive function for older adults with cognitive impairment: a systematic review based on ICD-11 and ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 36-43. |
[3] | WEN Jianing, JIN Qiuyan, ZHANG Qi, LI Jie, SI Qi. Effect of cognitively engaging physical activity on developing executive function of children and adolescents: a systematic review based on ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 44-53. |
[4] | GE Keke, FAN Yonghong, WANG Hangyu, DU Lilu, LI Changjiang, ZOU Min. Health benefit of mindfulness intervention for older adults with insomnia disorders: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 54-60. |
[5] | ZHANG Jingya, ZOU Min, SUN Hongwei, SUN Changlong, ZHU Juntong. Effect of psychological intervention on anxiety or depression in children and adolescents with hearing impairment: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1004-1011. |
[6] | WANG Junyu, YANG Yong, YUAN Xun, XIE Ting, ZHUANG Jie. Effect of high-intensity interval training on executive function for healthy children and adolescents: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1012-1020. |
[7] | WEI Xiaowei, YANG Jian, WEI Chunyan. Psychological and behavioral benefits of adapted yoga exercise for children with autism spectrum disorder in special education schools: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1021-1028. |
[8] | YANG Yaru, YANG Jian. School-based physical activity-related health services and their health benefits within the World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1040-1047. |
[9] | WANG He, HAN Liang, KAN Mengfan, YU Shaohong. Efficacy of electrical stimulation on shoulder-hand syndrome after stroke: a systematic review and meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1048-1056. |
[10] | SHI Jiawei, LI Lingyu, YANG Haojie, WANG Qinlu, ZOU Haiou. Effect of preoperative prerehabilitation training on total knee arthroplasty: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1057-1064. |
[11] | JIANG Changhao, HUANG Chen, GAO Xiaoyan, DAI Yuanfu, ZHAO Guoming. Effect of neurofeedback training on cognitive function in the elderly: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 903-909. |
[12] | WEI Xiaowei, YANG Jian, WEI Chunyan, HE Qiling. Adapted physical education programs for psychomotor development in school settings for children with intellectual and developmental disabilities: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 910-918. |
[13] | ZHANG Yuan, YANG Jian. School health services and effectiveness based on World Health Organization health-promoting school framework: a scoping review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 791-799. |
[14] | WANG Shaopu, CHEN Gang. Psychological-behavioral health services and its outcome based on World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 800-807. |
[15] | JIANG Changhao, GAO Xiaoyan. Effect of acute physical activity on cognitive function in children: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 667-672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|