《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2023, Vol. 29 ›› Issue (4): 416-422.doi: 10.3969/j.issn.1006-9771.2023.04.007
Previous Articles Next Articles
HUANG Chenglan1, HOU Yutong1, YANG Yunxiao1, ZENG Hong2a, ZHANG Ziyan3, ZHAO Wenkuan4, WANG Zanbo5, SHAN Chunlei6, DAI Kerong2b, CAI Bin2a, WANG Jinwu2b()
Received:
2022-08-20
Revised:
2023-03-21
Published:
2023-04-25
Online:
2023-05-19
Contact:
WANG Jinwu, E-mail: Supported by:
CLC Number:
HUANG Chenglan, HOU Yutong, YANG Yunxiao, ZENG Hong, ZHANG Ziyan, ZHAO Wenkuan, WANG Zanbo, SHAN Chunlei, DAI Kerong, CAI Bin, WANG Jinwu. 3D printed orthopedic insoles for flatfoot: a systematic review[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(4): 416-422.
"
文献 | 国家 | 样本特征 | 鞋垫类型 | 鞋垫材料 | 打印 技术 | 干预方案 | 评估 | 结论 |
---|---|---|---|---|---|---|---|---|
Jandova等[ | 捷克 | 正常足(n = 26) 扁平足(n = 18) 高弓足(n = 7) | 原始鞋垫; 定制鞋垫; 3D打印解剖鞋垫 | EVA | PolyJet | 佩戴鞋垫站立和行走 | 测量使用3种鞋垫行走时的足底压力分布 | 定制鞋垫和3D打印解剖鞋垫可改善扁平足足底压力 |
Xu等[ | 中国 | 扁平足(n = 80) | 3D打印定制鞋垫; 预制鞋垫 | EVA | 未提及 | 每天穿戴6~8 h,持续8周 | 测量足底压力;VAS | 3D打印定制鞋垫可改善足底压力分布,并提高舒适度 |
Cherni等[ | 加拿大 | 扁平足(n = 19) | 3D打印柔性矫形鞋垫; 带张贴的3D打印柔性矫形鞋垫; 3D打印刚性鞋垫 | 未提及 | 未提及 | 穿戴不同鞋垫持续步行3 min | 测量穿戴不同鞋垫下足底压力;肌电图 | 刚性鞋垫可改善足底压力,压力中心向中外侧方向位移减少,步行时姿势稳定性提高 |
赵碎浪等[ | 中国 | 扁平足(n = 9) | 3D打印全负重鞋垫; 3D打印半负重鞋垫; 3D打印非负重鞋垫 | PLA | FDM | 步行8 m | 测量足底压力;VAS | 带足弓支撑的半负重3D打印鞋垫支撑期总触地时间降低,压力中心向内侧移动,与足弓支撑高度正相关 |
Cheng等 [ | 中国 | 扁平足(n = 10) | 足弓加固支撑鞋垫; 足弓支撑鞋垫; 无足弓支撑鞋垫 | TPU | FDM | 步行 | 测量足部运动学参数和足底压力 | 鞋垫降低后足区峰值压力,控制后足外翻和前足外展 |
Ho等[ | 澳大利亚 | 扁平足(n = 13) | 3D打印定制鞋垫; 传统定制鞋垫 | PP | 未提及 | 步行5 m | 测量足和足踝生物力学变量 | 3D打印鞋垫降低踝关节跖屈力矩和力量 |
Desmyttere等[ | 加拿大 | 扁平足(n = 19) | 3D打印定制柔性矫形鞋垫; 带有张贴的3D打印定制柔性矫形鞋垫; 3D打印定制刚性矫形鞋垫 | PA | SLS | 步行3 min | 测量运动学和动力学参数 | 刚性鞋垫可减少中足外翻和前足外展;带有张贴的3D打印定制柔性矫形鞋垫可有效减少后足外翻角度和踝关节内翻力矩,增加膝外展力矩,控制足内旋 |
Hsu等[ | 中国 | 扁平足(n = 10) | 3D打印自动扫描鞋垫; 3D打印全接触鞋垫; 3D打印内侧楔形鞋垫 | TPU; EVA | FDM | 行走 | 运动分析系统;舒适度 | 3种鞋垫可以有效改善踝关节运动学和动力学以及主观舒适度 |
Lin等[ | 中国 | 扁平足(n = 12) | 3D打印定制矫形鞋垫 | PLA | FDM | 行走 | 测量运动学和动力学参数 | 降低踝关节外翻和外旋力矩,纠正足部异常,提供足够的机械强度承受步行中的重量 |
Yurt等[ | 土耳其 | 扁平足(n = 67) | 3D打印鞋垫; 传统定制鞋垫; 平面鞋垫 | EVA | 未提及 | 佩戴8周 | VAS;国际体力活动量表 | 3D打印鞋垫和传统定制鞋垫比平面鞋垫能更有效减轻扁平足疼痛 |
"
材料 | 特点 |
---|---|
EVA | 由乙烯和醋酸乙烯酯(vinyl acetate, VA)形成的热塑性共聚物,其性能与VA比例有关,VA比例大增加极性、粘合性、抗冲击性、柔韧性和相容性,降低结晶度、刚度、软化和熔点[ |
PLA | 易于印刷,机械性能高于大多数塑料[ |
TPU | 具有多功能的热塑性、弹性体性能和优异的机械性能,可分成硬段和软段,硬段能增加TPU强度,软段有助于提高柔韧性和伸长率,被广泛应用于工业、医疗、体育领域[ |
PA | 机械强度高,软化点高,耐热,耐磨损,具有一定的吸震性,品种多、产量大、应用较为广泛[ |
PP | 成本较低,有较高的耐化学性、防潮性,优异的机械性能,广泛应用于医疗设备[ |
[1] | SU S, MO Z, GUO J, et al. The effect of arch height and material hardness of personalizedinsole on correction and tissues of flatfoot[J]. J Healthc Eng, 2017, 2017: 8614341. |
[2] |
SALATHE E P, ARANGIO G A. A biomechanical model of the foot: the role of muscles, tendons, and ligaments[J]. J Biomech Eng, 2002, 124(3): 281-287.
doi: 10.1115/1.1468865 |
[3] | GWANI A S, ASARI M A, MOHD ISMAIL Z I. How the three arches of the foot intercorrelate[J]. Folia Morphol (Warsz), 2017, 76(4): 682-688. |
[4] |
ABOUTORABI A, SAEEDI H, KAMALI M, et al. Immediate effect of orthopedic shoe and functional foot orthosis on center of pressure displacement and gait parameters in juvenile flexible flat foot[J]. Prosthet Orthot Int, 2014, 38(3): 218-223.
doi: 10.1177/0309364613496111 pmid: 23986466 |
[5] |
FLORES D V, MEJÍA GÓMEZ C, FERNÁNDEZ HERNANDO M, et al. Adult acquired flatfoot deformity: anatomy, biomechanics, staging, and imaging findings[J]. Radiographics, 2019, 39(5): 1437-1460.
doi: 10.1148/rg.2019190046 pmid: 31498747 |
[6] |
PARK S Y, PARK D J. Comparison of foot structure, function, plantar pressure and balance ability according to the body mass index of young adults[J]. Osong Public Health Res Perspect, 2019, 10(2): 102-107.
doi: 10.24171/j.phrp.2019.10.2.09 |
[7] |
ZHAO X, GU Y, YU J, et al. The influence of gender, age, and body mass index on arch height and arch stiffness[J]. J Foot Ankle Surg, 2020, 59(2): 298-302.
doi: S1067-2516(19)30317-5 pmid: 32130994 |
[8] | PITA-FERNANDEZ S, GONZALEZ-MARTIN C, ALONSO-TAJES F, et al. Flat foot in a random population and its impact on quality of life and functionality[J]. J Clin Diagn Res, 2017, 11(4): LC22-LC27. |
[9] |
KODITHUWAKKU ARACHCHIGE S N K, CHANDER H, KNIGHT A. Flatfeet: biomechanical implications, assessment and management[J]. Foot (Edinb), 2019, 38: 81-85.
doi: S0958-2592(18)30153-6 pmid: 30844660 |
[10] |
DARS S, UDEN H, BANWELL H A, et al. The effectiveness of non-surgical intervention (foot orthoses) for paediatric flexible pes planus: a systematic review: update[J]. PLoS One, 2018, 13(2): e0193060.
doi: 10.1371/journal.pone.0193060 |
[11] |
ZUIL-ESCOBAR J C, MARTÍNEZ-CEPA C B, MARTÍN-URRIALDE J A, et al. Evaluating the medial longitudinal arch of the foot: correlations, reliability, and accuracy in people with a low arch[J]. Phys Ther, 2019, 99(3): 364-372.
doi: 10.1093/ptj/pzy149 |
[12] | 宋艳, 郑坤, 魏浩馨, 等. 足姿指数评估扁平足信度及在3D打印鞋垫中的应用[J]. 中国组织工程研究, 2022, 26(3): 344-349. |
SONG Y, ZHENG K, WEI H X, et al. Reliability of flat feet evaluated by foot posture index and its application in three-dimensional printing insoles[J]. Chin J Tissue Eng Res, 2022, 26(3): 344-349. | |
[13] |
WAGNER E, WAGNER P. Current concepts in treatment of ligament incompetence in the acquired flatfoot[J]. Foot Ankle Clin, 2021, 26(2): 373-389.
doi: 10.1016/j.fcl.2021.03.010 pmid: 33990259 |
[14] |
JANDOVA S, MENDRICKY R. Benefits of 3D printed and customized anatomical footwear insoles for plantar pressure distribution[J]. 3D Print Addit Manuf, 2022, 9(6): 547-556.
doi: 10.1089/3dp.2021.0002 pmid: 36660748 |
[15] |
XU R, WANG Z, REN Z, et al. Comparative study of the effects of customized 3D printed insole and prefabricated insole on plantar pressure and comfort in patients with symptomatic flatfoot[J]. Med Sci Monit, 2019, 25: 3510-3519.
doi: 10.12659/MSM.916975 |
[16] |
CHERNI Y, DESMYTTERE G, HAJIZADEH M, et al. Effect of 3D printed foot orthoses stiffness on muscle activity and plantar pressures in individuals with flexible flatfeet: a statistical non-parametric mapping study[J]. Clin Biomech (Bristol, Avon), 2022, 92: 105553.
doi: 10.1016/j.clinbiomech.2021.105553 |
[17] | 赵碎浪, 祁子芮, 曹中华, 等. 3D打印支撑鞋垫对扁平足足底压力分布的影响[J]. 皮革科学与工程, 2022, 32(3): 85-89. |
ZHAO S L, QI Z R, CAO Z H, et al. Effect of 3D printed arch-support insoles on plantar pressure distribution in flat feet[J]. J Leather Sci Eng, 2022, 32(3): 85-89. | |
[18] |
CHENG K W, PENG Y, CHEN T L W, et al. A three-dimensional printed foot orthosis for flexible flatfoot: an exploratory biomechanical study on arch support reinforcement and undercut[J]. Materials (Basel), 2021, 14(18): 5297.
doi: 10.3390/ma14185297 |
[19] |
HO M, NGUYEN J, HEALES L, et al. The biomechanical effects of 3D printed and traditionally made foot orthoses in individuals with unilateral plantar fasciopathy and flat feet[J]. Gait Posture, 2022, 96: 257-264.
doi: 10.1016/j.gaitpost.2022.06.006 pmid: 35709609 |
[20] |
DESMYTTERE G, HAJIZADEH M, BLEAU J, et al. Anti-pronator components are essential to effectively alter lower-limb kinematics and kinetics in individuals with flexible flatfeet[J]. Clin Biomech (Bristol, Avon), 2021, 86: 105390.
doi: 10.1016/j.clinbiomech.2021.105390 |
[21] | HSU C Y, WANG C S, LIN K W, et al. Biomechanical analysis of the flatfoot with different 3D-printed insoles on the lower extremities[J]. Bioengineering (Basel), 2022, 9(10): 563. |
[22] | LIN K W, HU C J, YANG W W, et al. Biomechanical evaluation and strength test of 3D-printed foot orthoses[J]. Appl Bionics Biomech, 2019, 2019: 4989534. |
[23] | YURT Y, ŞENER G, YAKUT Y. The effect of different foot orthoses on pain and health related quality of life in painful flexible flat foot: a randomized controlled trial[J]. Eur J Phys Rehabil Med, 2019, 55(1): 95-102. |
[24] | COLLINGS R, FREEMAN J, LATOUR J M, et al. Footwear and insole design features for offloading the diabetic at risk foot: a systematic review and meta‐analyses[J]. Endocrinol Diabetes Metab, 2020, 4(1): e00132. |
[25] |
GIL-CALVO M, JIMENEZ-PEREZ I, PRIEGO-QUESADA J I, et al. Effect of custom-made and prefabricated foot orthoses on kinematic parameters during an intense prolonged run[J]. PLoS One, 2020, 15(3): e0230877.
doi: 10.1371/journal.pone.0230877 |
[26] |
MO S, LEUNG S H S, CHAN Z Y S, et al. The biomechanical difference between running with traditional and 3D printed orthoses[J]. J Sports Sci, 2019, 37(19): 2191-2197.
doi: 10.1080/02640414.2019.1626069 |
[27] |
KIM G B, LEE S, KIM H, et al. Three-dimensional printing: basic principles and applications in medicine and radiology[J]. Korean J Radiol, 2016, 17(2): 182-197.
doi: 10.3348/kjr.2016.17.2.182 pmid: 26957903 |
[28] |
CHOO Y J, BOUDIER-REVÉRET M, CHANG M C. 3D printing technology applied to orthosis manufacturing: narrative review[J]. Ann Palliat Med, 2020, 9(6): 4262-4270.
doi: 10.21037/apm-20-1185 pmid: 33040564 |
[29] |
LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D printing and customized additive manufacturing[J]. Chem Rev, 2017, 117(15): 10212-10290.
doi: 10.1021/acs.chemrev.7b00074 pmid: 28756658 |
[30] | SHAHRUBUDIN N, LEE T C, RAMLAN R. An overview on 3D printing technology: technological, materials, and applications[J]. Proc Manuf, 2019, 35: 1286-1296. |
[31] |
LIAW C Y, GUVENDIREN M. Current and emerging applications of 3D printing in medicine[J]. Biofabrication, 2017, 9(2): 024102.
doi: 10.1088/1758-5090/aa7279 |
[32] |
ZOLFAGHARIAN A, LAKHI M, RANJBAR S, et al. Custom shoe sole design and modeling toward 3D printing[J]. Int J Bioprint, 2021, 7(4): 396.
doi: 10.18063/ijb.v7i4.396 |
[33] |
SALEH ALGHAMDI S, JOHN S, ROY CHOUDHURY N, et al. Additive manufacturing of polymer materials: progress, promise and challenges[J]. Polymers (Basel), 2021, 13(5): 753.
doi: 10.3390/polym13050753 |
[34] |
MELIA G, SIEGKAS P, LEVICK J, et al. Insoles of uniform softer material reduced plantar pressure compared to dual-material insoles during regular and loaded gait[J]. Appl Ergon, 2021, 91: 103298.
doi: 10.1016/j.apergo.2020.103298 |
[35] |
UDDIN K Z, YOUSSEF G, TRKOV M, et al. Gradient optimization of multi-layered density-graded foam laminates for footwear material design[J]. J Biomech, 2020, 109: 109950.
doi: 10.1016/j.jbiomech.2020.109950 |
[36] |
GENINA N, HOLLÄNDER J, JUKARAINEN H, et al. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices[J]. Eur J Pharm Sci, 2016, 90: 53-63.
doi: 10.1016/j.ejps.2015.11.005 pmid: 26545484 |
[37] |
VALERGA A P, BATISTA M, SALGUERO J, et al. Influence of PLA filament conditions on characteristics of FDM parts[J]. Materials (Basel), 2018, 11(8): 1322.
doi: 10.3390/ma11081322 |
[38] |
TAKANO M, TAKAMATSU K, SAITO H. High-strength heat-elongated thermoplastic polyurethane elastomer consisting of a stacked domain structure[J]. Polymers (Basel), 2022, 14(7): 1470.
doi: 10.3390/polym14071470 |
[39] |
STOIA D I, MARŞAVINA L, LINUL E. Correlations between process parameters and outcome properties of laser-sintered polyamide[J]. Polymers (Basel), 2019, 11(11): 1850.
doi: 10.3390/polym11111850 |
[40] |
FISCHER K M, HOWELL A P. Reusability of autoclaved 3D printed polypropylene compared to a glass filled polypropylene composite[J]. 3D Print Med, 2021, 7: 20.
doi: 10.1186/s41205-021-00111-x pmid: 34370133 |
[41] |
ABAS M, HABIB T, NOOR S, et al. Parametric investigation and optimization to study the effect of process parameters on the dimensional deviation of fused deposition modeling of 3D printed parts[J]. Polymers (Basel), 2022, 14(17): 3667.
doi: 10.3390/polym14173667 |
[42] |
HOANG N T T, CHEN S, CHOU L W. The impact of foot orthoses and exercises on pain and navicular drop for adult flatfoot: a network meta-analysis[J]. Int J Environ Res Public Health, 2021, 18(15): 8063.
doi: 10.3390/ijerph18158063 |
[43] |
SHI Q Q, LI P L, YICK K L, et al. Influence of contoured insoles with different materials on kinematics and kinetics changes in diabetic elderly during gait[J]. Int J Environ Res Public Health, 2022, 19(19): 12502.
doi: 10.3390/ijerph191912502 |
[44] |
GERRARD J M, BONANNO D R, WHITTAKER G A, et al. Effect of different orthotic materials on plantar pressures: a systematic review[J]. J Foot Ankle Res, 2020, 13(1): 35.
doi: 10.1186/s13047-020-00401-3 pmid: 32527296 |
[45] |
AMINIAN G, SAFAEEPOUR Z, FARHOODI M, et al. The effect of prefabricated and proprioceptive foot orthoses on plantar pressure distribution in patients with flexible flatfoot during walking[J]. Prosthet Orthot Int, 2013, 37(3): 227-232.
doi: 10.1177/0309364612461167 pmid: 23085538 |
[46] |
DESMYTTERE G, HAJIZADEH M, BLEAU J, et al. Effect of foot orthosis design on lower limb joint kinematics and kinetics during walking in flexible pes planovalgus: a systematic review and meta-analysis[J]. Clin Biomech (Bristol, Avon), 2018, 59: 117-129.
doi: 10.1016/j.clinbiomech.2018.09.018 |
[47] |
HAJIZADEH M, DESMYTTERE G, CARMONA J P, et al. Can foot orthoses impose different gait features based on geometrical design in healthy subjects? A systematic review and meta-analysis[J]. Foot (Edinb), 2020, 42: 101646.
doi: 10.1016/j.foot.2019.10.001 |
[48] |
OERLEMANS L N T, PEETERS C M M, MUNNIK-HAGEWOUD R, et al. Foot orthoses for flexible flatfeet in children and adults: a systematic review and meta-analysis of patient-reported outcomes[J]. BMC Musculoskelet Disord, 2023, 24(1): 16.
doi: 10.1186/s12891-022-06044-8 |
[1] | WANG Hangyu, GE Keke, FAN Yonghong, DU Lilu, ZOU Min, FENG Lei. Effect of active music therapy on cognitive function for older adults with cognitive impairment: a systematic review based on ICD-11 and ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 36-43. |
[2] | WEN Jianing, JIN Qiuyan, ZHANG Qi, LI Jie, SI Qi. Effect of cognitively engaging physical activity on developing executive function of children and adolescents: a systematic review based on ICF [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 44-53. |
[3] | GE Keke, FAN Yonghong, WANG Hangyu, DU Lilu, LI Changjiang, ZOU Min. Health benefit of mindfulness intervention for older adults with insomnia disorders: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 54-60. |
[4] | ZHANG Jingya, ZOU Min, SUN Hongwei, SUN Changlong, ZHU Juntong. Effect of psychological intervention on anxiety or depression in children and adolescents with hearing impairment: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1004-1011. |
[5] | WANG Junyu, YANG Yong, YUAN Xun, XIE Ting, ZHUANG Jie. Effect of high-intensity interval training on executive function for healthy children and adolescents: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1012-1020. |
[6] | WEI Xiaowei, YANG Jian, WEI Chunyan. Psychological and behavioral benefits of adapted yoga exercise for children with autism spectrum disorder in special education schools: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1021-1028. |
[7] | YANG Yaru, YANG Jian. School-based physical activity-related health services and their health benefits within the World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1040-1047. |
[8] | WANG He, HAN Liang, KAN Mengfan, YU Shaohong. Efficacy of electrical stimulation on shoulder-hand syndrome after stroke: a systematic review and meta-analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1048-1056. |
[9] | SHI Jiawei, LI Lingyu, YANG Haojie, WANG Qinlu, ZOU Haiou. Effect of preoperative prerehabilitation training on total knee arthroplasty: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1057-1064. |
[10] | JIANG Changhao, HUANG Chen, GAO Xiaoyan, DAI Yuanfu, ZHAO Guoming. Effect of neurofeedback training on cognitive function in the elderly: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 903-909. |
[11] | WEI Xiaowei, YANG Jian, WEI Chunyan, HE Qiling. Adapted physical education programs for psychomotor development in school settings for children with intellectual and developmental disabilities: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 910-918. |
[12] | YU Zhongqi, WANG Chao, HE Gang, DIAO Lianfu, LIU Mengting, YU Yao, ZHANG Liang, WANG Ruiyan. Effect of three intrinsic foot muscle exercises on cross-sectional area of abductor hallucis muscle and foot morphology in subjects with flatfoot [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 961-966. |
[13] | WANG Shaopu, CHEN Gang. Psychological-behavioral health services and its outcome based on World Health Organization health-promoting school framework: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 800-807. |
[14] | JIANG Changhao, GAO Xiaoyan. Effect of acute physical activity on cognitive function in children: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 667-672. |
[15] | YU Zhongqi, WANG Chao, HE Gang, ZHANG Liang, WANG Ruiyan. Effect of short-foot exercise on adult flatfoot: a systematic review [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(5): 551-557. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|