《Chinese Journal of Rehabilitation Theory and Practice》 ›› 2023, Vol. 29 ›› Issue (10): 1171-1178.doi: 10.3969/j.issn.1006-9771.2023.10.008
Previous Articles Next Articles
ZHANG Ning1,2, YANG Yuanbin1,2(), TIAN Haolin1, WAN Mengying1,2
Received:
2023-07-25
Revised:
2023-09-11
Published:
2023-10-25
Online:
2023-11-16
Contact:
YANG Yuanbin, E-mail: duyiran0506@126.com
Supported by:
CLC Number:
ZHANG Ning, YANG Yuanbin, TIAN Haolin, WAN Mengying. Application of functional near-infrared spectroscopy in rehabilitation: a visualized analysis[J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(10): 1171-1178.
"
编号 | 大小 | Silhouette | 标签 | 关键词 |
---|---|---|---|---|
#0 | 121 | 0.763 | 神经康复 | 脑卒中、帕金森病、前额叶皮质、初级运动皮质、顶叶皮质、皮质激活、功能连接、上肢、神经反馈、脑机接口、虚拟现实、步态、平衡扰动任务、双任务、抗阻训练、肌力、镜像疗法、外骨骼、动作控制、神经可塑性、神经再生、神经代偿、针灸等 |
#1 | 72 | 0.745 | 言语治疗 | 言语发育障碍、语音清晰度、语音加工能力、自闭症谱系障碍、感音神经性听力损失等 |
#2 | 50 | 0.706 | 运动疗法 | 脊髓损伤、多发性硬化症、机器人辅助步态训练、可穿戴设备、神经可塑性、运动处方等 |
#3 | 47 | 0.717 | 心脏康复 | 预康复、有氧运动、心血管疾病、6分钟步行测试、活动监测、认知功能等 |
#4 | 37 | 0.754 | 日常生活活动 | 日常生活电子辅助设备、康复机器人、健康计划执行情况、生活质量、环境辅助生活等 |
#5 | 20 | 0.890 | 长期护理 | 职业、体力活动、适应能力、照顾者教育、心理教育干预等 |
#6 | 7 | 0.974 | 儿童 | 儿童言语、智力障碍、视觉反馈、人工耳蜗、新生儿听力筛查等 |
[1] |
IZZETOGLU K, AYAZ H, MERZAGORA A, et al. The evolution of field deployable fNIR spectroscopy from bench to clinical settings[J]. J Innov Opt Health Sci, 2011, 4(3): 239-250.
doi: 10.1142/S1793545811001587 |
[2] |
PINTI P, TACHTSIDIS I, HAMILTON A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1): 5-29.
doi: 10.1111/nyas.v1464.1 |
[3] |
RAHMAN M A, SIDDIK A B, GHOSH T K, et al. A narrative review on clinical applications of fNIRS[J]. J Digit Imaging, 2020, 33(5): 1167-1184.
doi: 10.1007/s10278-020-00387-1 |
[4] |
FERRARI M, QUARESIMA V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. Neuroimage, 2012, 63(2): 921-935.
doi: 10.1016/j.neuroimage.2012.03.049 pmid: 22510258 |
[5] |
FOX P T, RAICHLE M E. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography[J]. J Neurophysiol, 1984, 51(5): 1109-1120.
doi: 10.1152/jn.1984.51.5.1109 pmid: 6610024 |
[6] |
CHEN W L, WAGNER J, HEUGEL N, et al. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: advances and future directions[J]. Front Neurosci, 2020, 14: 724.
doi: 10.3389/fnins.2020.00724 |
[7] |
LEE FRIESEN C, LAWRENCE M, INGRAM T G J, et al. Home-based portable fNIRS-derived cortical laterality correlates with impairment and function in chronic stroke[J]. Front Hum Neurosci, 2022, 16: 1023246.
doi: 10.3389/fnhum.2022.1023246 |
[8] |
CHEN C. Searching for intellectual turning points: progressive knowledge domain visualization[J]. Proc Natl Acad Sci USA, 2004, 101 (Suppl 1): 5303-5310.
doi: 10.1073/pnas.0307513100 |
[9] |
LUO H, CAI Z, HUANG Y, et al. Study on pain catastrophizing from 2010 to 2020: a bibliometric analysis via CiteSpace[J]. Front Psychol, 2021, 12: 759347.
doi: 10.3389/fpsyg.2021.759347 |
[10] |
LIU S, SUN Y P, GAO X L, et al. Knowledge domain and emerging trends in Alzheimer's disease: a scientometric review based on CiteSpace analysis[J]. Neural Regen Res, 2019, 14(9): 1643-1650.
doi: 10.4103/1673-5374.255995 pmid: 31089065 |
[11] |
SABE M, CHEN C, PEREZ N, et al. Thirty years of research on negative symptoms of schizophrenia: a scientometric analysis of hotspots, bursts, and research trends[J]. Neurosci Biobehav Rev, 2023, 144: 104979.
doi: 10.1016/j.neubiorev.2022.104979 |
[12] |
ZHONG D, LI Y, HUANG Y, et al. Molecular mechanisms of exercise on cancer: a bibliometrics study and visualization analysis via CiteSpace[J]. Front Mol Biosci, 2022, 8: 797902.
doi: 10.3389/fmolb.2021.797902 |
[13] |
TAŞKIN Z, AYDINOGLU A U. Collaborative interdisciplinary astrobiology research: a bibliometric study of the NASA Astrobiology Institute[J]. Scientometrics, 2015, 103(3): 1003-1022.
doi: 10.1007/s11192-015-1576-8 |
[14] |
CHEN C M. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. J Am Soc Inf Sci Technol, 2006, 57(3): 359-377.
doi: 10.1002/asi.v57:3 |
[15] |
YANG M, YANG Z, YUAN T, et al. A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions[J]. Front Neurol, 2019, 10: 58.
doi: 10.3389/fneur.2019.00058 pmid: 30804877 |
[16] |
NASEER N, HONG K S. fNIRS-based brain-computer interfaces: a review[J]. Front Hum Neurosci, 2015, 9: 3. Erratum in: Front Hum Neurosci, 2015, 9: 172.
doi: 10.3389/fnhum.2015.00003 pmid: 25674060 |
[17] |
LIN Q, ZHANG Y, ZHANG Y, et al. The frequency effect of the motor imagery brain computer interface training on cortical response in healthy subjects: a randomized clinical trial of functional near-infrared spectroscopy study[J]. Front Neurosci, 2022, 16: 810553.
doi: 10.3389/fnins.2022.810553 |
[18] |
FLOREANI E D, ORLANDI S, CHAU T. A pediatric near-infrared spectroscopy brain-computer interface based on the detection of emotional valence[J]. Front Hum Neurosci, 2022, 16: 938708.
doi: 10.3389/fnhum.2022.938708 |
[19] |
KHAN H, NASEER N, YAZIDI A, et al. Analysis of human gait using hybrid EEG-fNIRS-based BCI system: a review[J]. Front Hum Neurosci, 2021, 14: 613254.
doi: 10.3389/fnhum.2020.613254 |
[20] |
WANG Z, CAO C, CHEN L, et al. Multimodal neural response and effect assessment during a BCI-based neurofeedback training after stroke[J]. Front Neurosci, 2022, 16: 884420.
doi: 10.3389/fnins.2022.884420 |
[21] |
LIU L, JIN M, ZHANG L, et al. Brain-computer interface-robot training enhances upper extremity performance and changes the cortical activation in stroke patients: a functional near-infrared spectroscopy study[J]. Front Neurosci, 2022, 16: 809657.
doi: 10.3389/fnins.2022.809657 |
[22] |
WANG Y, YANG Z, JI H, et al. Cross-modal transfer learning from EEG to functional near-infrared spectroscopy for classification task in brain-computer interface system[J]. Front Psychol, 2022, 13: 833007.
doi: 10.3389/fpsyg.2022.833007 |
[23] |
DALY J J, WOLPAW J R. Brain-computer interfaces in neurological rehabilitation[J]. Lancet Neurol, 2008, 7(11): 1032-1043.
doi: 10.1016/S1474-4422(08)70223-0 pmid: 18835541 |
[24] |
HEROLD F, WIEGEL P, SCHOLKMANN F, et al. Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks[J]. Neurophotonics, 2017, 4(4): 041403.
doi: 10.1117/1.NPh.4.4.041403 |
[25] |
SCHOLKMANN F, KLEISER S, METZ A J, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology[J]. Neuroimage, 2014, 85: 6-27.
doi: 10.1016/j.neuroimage.2013.05.004 |
[26] |
HEROLD F, WIEGEL P, SCHOLKMANN F, et al. Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise-cognition science: a systematic, methodology-focused review[J]. J Clin Med, 2018, 7(12): 466.
doi: 10.3390/jcm7120466 |
[27] |
VITORIO R, STUART S, ROCHESTER L, et al. fNIRS response during walking: artefact or cortical activity? A systematic review[J]. Neurosci Biobehav Rev, 2017, 83: 160-172.
doi: 10.1016/j.neubiorev.2017.10.002 |
[28] |
HOCKE L M, ONI I K, DUSZYNSKI C C, et al. Automated processing of fNIRS data: a visual guide to the pitfalls and consequences[J]. Algorithms, 2018, 11(5): 67.
doi: 10.3390/a11050067 |
[29] |
AL-YAHYA E, JOHANSEN-BERG H, KISCHKA U, et al. Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study[J]. Neurorehabil Neural Repair, 2016, 30(6): 591-599.
doi: 10.1177/1545968315613864 |
[30] | BATULA A M, MARK J A, KIM Y E, et al. Comparison of brain activation during motor imagery and motor movement using fNIRS[J]. Comput Intell Neurosci, 2017, 2017: 5491296. |
[31] |
VON LÜHMANN A, HERFF C, HEGER D, et al. Toward a wireless open source instrument: functional near-infrared spectroscopy in mobile neuroergonomics and BCI applications[J]. Front Hum Neurosci, 2015, 9: 617.
doi: 10.3389/fnhum.2015.00617 pmid: 26617510 |
[32] |
DOBKIN B H. Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation[J]. J Physiol, 2007, 579(Pt 3): 637-642.
doi: 10.1113/jphysiol.2006.123067 |
[33] |
CORTESE S, SABÉ M, CHEN C, et al. Half a century of research on attention-deficit/hyperactivity disorder: a scientometric study[J]. Neurosci Biobehav Rev, 2022, 140: 104769.
doi: 10.1016/j.neubiorev.2022.104769 |
[34] | 谢良玉, 曹盛楠, 王佳颖, 等. 基于CiteSpace下肢康复机器人的研究可视化分析[J]. 中国医疗设备, 2023, 38(5): 143-148, 172. |
XIE L Y, CAO S N, WANG J Y, et al. Visual analysis of lower limb rehabilitation robot based on CiteSpace[J]. Chin Med Dev, 2023, 38(5): 143-148, 172. | |
[35] |
CHEN C, SONG I Y, YUAN X, et al. The thematic and citation landscape of data and knowledge engineering (1985-2007)[J]. Data Knowl Eng, 2008, 67(2): 234-259.
doi: 10.1016/j.datak.2008.05.004 |
[36] | CHEN C. An information-theoretic view of visual analytics[J]. IEEE Comput Graph Appl, 2008, 28(1): 18-23. |
[37] |
SHIBATA N, KAJIKAWA Y, TAKEDA Y, et al. Detecting emerging research fronts based on topological measures in citation networks of scientific publications[J]. Technovation, 2008, 28(11): 758-775.
doi: 10.1016/j.technovation.2008.03.009 |
[38] |
RIEKE J D, MATARASSO A K, YUSUFALI M M, et al. Development of a combined, sequential real-time fMRI and fNIRS neurofeedback system to enhance motor learning after stroke[J]. J Neurosci Methods, 2020, 341: 108719.
doi: 10.1016/j.jneumeth.2020.108719 |
[39] |
ARUN K M, SMITHA K A, SYLAJA P N, et al. Identifying resting-state functional connectivity changes in the motor cortex using fNIRS during recovery from stroke[J]. Brain Topogr, 2020, 33(6): 710-719.
doi: 10.1007/s10548-020-00785-2 |
[40] |
CHEN Z, SONG X H, QIAO Y J, et al. Increased inertia triggers linear responses in motor cortices during large-extent movements: a fNIRS study[J]. Brain Sci, 2022, 12(11): 1539.
doi: 10.3390/brainsci12111539 |
[41] | 顾雨薇, 孙莉敏. 功能性近红外光谱在脑卒中偏瘫康复中的应用进展[J]. 中国康复医学杂志, 2023, 38(2): 257-262. |
[42] | DELORME M, VERGOTTE G, PERREY S, et al. Time course of sensorimotor cortex reorganization during upper extremity task accompanying motor recovery early after stroke: an fNIRS study[J]. Restor Neurol Neurosci, 2019, 37(3): 207-218. |
[43] |
FUSTER J M. Prefrontal neurons in networks of executive memory[J]. Brain Res Bull, 2000, 52(5): 331-336.
pmid: 10922510 |
[44] |
LIM S B, YANG C L, PETERS S, et al. Phase-dependent brain activation of the frontal and parietal regions during walking after stroke: an fNIRS study[J]. Front Neurol, 2022, 13: 904722.
doi: 10.3389/fneur.2022.904722 |
[45] |
SONG Y, SUN Z, SUN W, et al. Neuroplasticity following stroke from a functional laterality perspective: a fNIRS study[J]. Brain Topogr, 2023, 36(3): 283-293.
doi: 10.1007/s10548-023-00946-z pmid: 36856917 |
[46] | DECETY J, GRÈZES J. Neural mechanisms subserving the perception of human actions[J]. Trends Cog Sci, 1999: 3: 172-178. |
[47] | MALOUIN F, RICHARDS C L, JACKSON P L, et al. Motor imagery for optimizing the reacquisition of locomotor skills after cerebral damage[M]. London: Oxford University Press, 2010: 161-176. |
[48] |
MALOUIN F, RICHARDS C L. Mental practice for relearning locomotor skills[J]. Phys Ther, 2010, 90(2): 240-251.
doi: 10.2522/ptj.20090029 pmid: 20022993 |
[49] |
DAI Y, HUANG F, ZHU Y. Clinical efficacy of motor imagery therapy based on fNIRs technology in rehabilitation of upper limb function after acute cerebral infarction[J]. Pak J Med Sci, 2022, 38(7): 1980-1985.
doi: 10.12669/pjms.38.7.5344 pmid: 36246721 |
[50] |
KAISER V, BAUERNFEIND G, KREILINGER A, et al. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG[J]. Neuroimage, 2014, 85(Pt 1): 432-444.
doi: 10.1016/j.neuroimage.2013.04.097 |
[51] | HUO C, ZHANG S, XU G, et al. Cortical activation response during acupuncture intervention for hemiplegia limbs in stroke patients: a preliminary fNIRS study[C]. New York: IEEE, 2022: 1-2. |
[52] |
LIANG J, SONG Y, BELKACEM A N, et al. Prediction of balance function for stroke based on EEG and fNIRS features during ankle dorsiflexion[J]. Front Neurosci, 2022, 16: 968928.
doi: 10.3389/fnins.2022.968928 |
[53] |
COLLETT J, FLEMING M K, MEESTER D, et al. Dual-task walking and automaticity after stroke: insights from a secondary analysis and imaging sub-study of a randomised controlled trial[J]. Clin Rehabil, 2021, 35(11): 1599-1610.
doi: 10.1177/02692155211017360 |
[1] | LUO Lihua, WANG Yusheng, LI Jianfeng, DONG Jige. Effect of early postoperative comprehensive rehabilitation on children and youth with supracondylar fracture of humerus complicated with ulnar nerve injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 105-110. |
[2] | WANG Zihao, LI Xinhua, JIANG Huiping, GUO Sainan, LIANG Qiuman, SHI Tingqi. Short-term knee function after total knee arthroplasty and related factors [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 111-118. |
[3] | CHEN Junwen, CHEN Qian, CHEN Cheng, LI Shuyue, LIU Lingling, WU Cunshu, GONG Xiang, LU Jun, XU Guangxu. Effect of modified Baduanjin exercise on cardiopulmonary function, motor function and activities of daily living for stroke patients [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2024, 30(1): 74-80. |
[4] | SHI Jiawei, LI Lingyu, YANG Haojie, WANG Qinlu, ZOU Haiou. Effect of preoperative prerehabilitation training on total knee arthroplasty: a systematic review of systematic reviews [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1057-1064. |
[5] | ZOU Yucong, ZHOU Jing, LIN Weiming, LI Dongxia, WANG Juan, WANG Yuqi, WANG Yulong. Treatments for prolonged disorder of consciousness in recent five years: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1065-1071. |
[6] | CAI Huanian, FEI Sixian, ZHANG Yichen, SUN Qing, GUO Shuai, SONG Tao. Motion assistance analysis for robot-assisted tele-rehabilitation based on bilateral admittance control [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(9): 1104-1109. |
[7] | LIU Yang, ZHANG Peng, HUANG Ying, CHEN Han, XU Chen, LI Min. Path analysis of mediating effect of perceived stress affecting impact of event in rehabilitation patients with traumatic injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 954-960. |
[8] | YI Qifeng, HUANG Zhuoer, YANG Guoli, XIE Lihua, XIE Shengfeng, WU Xiaoxia, YAN Jin. Development, and reliability and validity testing of a knowledge needs questionnaire of respiratory rehabilitation training for in-service healthcare workers [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(8): 985-992. |
[9] | LI Ziyi, SONG Weiqun, DU Jubao, CAO Guanglei, ZHANG Yanming, LI Ran. Effect of motor imagery on knee function after unicompartmental knee arthroplasty [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 745-749. |
[10] | REN Yi, WANG Rui, ZHANG Yaohua. Effect of proprioceptive neuromuscular facilitation combined with neuromuscular electrical stimulation on chronic ankle instability [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 750-755. |
[11] | LI Fang, HUO Su, DU Jubao, LIU Xiuzhen, LI Xiaoshuang, SONG Weiqun. Effect of transcranial direct current stimulation combined with task-oriented rehabilitation training on forelimb motor dysfunction in rats with spinal cord injury [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 777-781. |
[12] | WANG Jingxuan, LÜ Diyang, FANG Boyan. Non-drug rehabilitation for gait abnormality of Parkinson's disease: a review based on ClinicalTrials.gov [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 816-821. |
[13] | MA Tiantian, YU Zifu, QIN Fang, LENG Xiaoxuan, LIU Xihua. Application of constraint-induced movement therapy in the field of rehabilitation: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 822-832. |
[14] | TANG Qiang, ZHENG Shuang, WANG Lei, WANG Yan, LI Baolong, LIU Guijun, ZHU Luwen. Development of traditional Chinese medicine rehabilitation curriculum based on World Health Organization rehabilitation competency framework [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(7): 862-868. |
[15] | WU Qianhao, HOU Rongjie, FU Liyuan. Pelvic floor rehabilitation domestic and abroad in the last decade: a visualized analysis [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2023, 29(6): 673-685. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|